Spaces:
Runtime error
Runtime error
File size: 16,323 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
# Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization
from typing import Dict, List, Tuple, Union
import cv2
import numpy as np
import pyclipper
from shapely.geometry import Polygon
from ..core import DetectionPostProcessor
__all__ = ["DBPostProcessor"]
class DBPostProcessor(DetectionPostProcessor):
"""Implements a post processor for DBNet adapted from the implementation of `xuannianz
<https://github.com/xuannianz/DifferentiableBinarization>`_.
Args:
----
unclip ratio: ratio used to unshrink polygons
min_size_box: minimal length (pix) to keep a box
max_candidates: maximum boxes to consider in a single page
box_thresh: minimal objectness score to consider a box
bin_thresh: threshold used to binzarized p_map at inference time
"""
def __init__(
self,
box_thresh: float = 0.1,
bin_thresh: float = 0.3,
assume_straight_pages: bool = True,
) -> None:
super().__init__(box_thresh, bin_thresh, assume_straight_pages)
self.unclip_ratio = 1.5
def polygon_to_box(
self,
points: np.ndarray,
) -> np.ndarray:
"""Expand a polygon (points) by a factor unclip_ratio, and returns a polygon
Args:
----
points: The first parameter.
Returns:
-------
a box in absolute coordinates (xmin, ymin, xmax, ymax) or (4, 2) array (quadrangle)
"""
if not self.assume_straight_pages:
# Compute the rectangle polygon enclosing the raw polygon
rect = cv2.minAreaRect(points)
points = cv2.boxPoints(rect)
# Add 1 pixel to correct cv2 approx
area = (rect[1][0] + 1) * (1 + rect[1][1])
length = 2 * (rect[1][0] + rect[1][1]) + 2
else:
poly = Polygon(points)
area = poly.area
length = poly.length
distance = area * self.unclip_ratio / length # compute distance to expand polygon
offset = pyclipper.PyclipperOffset()
offset.AddPath(points, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
_points = offset.Execute(distance)
# Take biggest stack of points
idx = 0
if len(_points) > 1:
max_size = 0
for _idx, p in enumerate(_points):
if len(p) > max_size:
idx = _idx
max_size = len(p)
# We ensure that _points can be correctly casted to a ndarray
_points = [_points[idx]]
expanded_points: np.ndarray = np.asarray(_points) # expand polygon
if len(expanded_points) < 1:
return None # type: ignore[return-value]
return (
cv2.boundingRect(expanded_points) # type: ignore[return-value]
if self.assume_straight_pages
else np.roll(cv2.boxPoints(cv2.minAreaRect(expanded_points)), -1, axis=0)
)
def bitmap_to_boxes(
self,
pred: np.ndarray,
bitmap: np.ndarray,
) -> np.ndarray:
"""Compute boxes from a bitmap/pred_map: find connected components then filter boxes
Args:
----
pred: Pred map from differentiable binarization output
bitmap: Bitmap map computed from pred (binarized)
angle_tol: Comparison tolerance of the angle with the median angle across the page
ratio_tol: Under this limit aspect ratio, we cannot resolve the direction of the crop
Returns:
-------
np tensor boxes for the bitmap, each box is a 5-element list
containing x, y, w, h, score for the box
"""
height, width = bitmap.shape[:2]
min_size_box = 2
boxes: List[Union[np.ndarray, List[float]]] = []
# get contours from connected components on the bitmap
contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
# Check whether smallest enclosing bounding box is not too small
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < min_size_box):
continue
# Compute objectness
if self.assume_straight_pages:
x, y, w, h = cv2.boundingRect(contour)
points: np.ndarray = np.array([[x, y], [x, y + h], [x + w, y + h], [x + w, y]])
score = self.box_score(pred, points, assume_straight_pages=True)
else:
score = self.box_score(pred, contour, assume_straight_pages=False)
if score < self.box_thresh: # remove polygons with a weak objectness
continue
if self.assume_straight_pages:
_box = self.polygon_to_box(points)
else:
_box = self.polygon_to_box(np.squeeze(contour))
# Remove too small boxes
if self.assume_straight_pages:
if _box is None or _box[2] < min_size_box or _box[3] < min_size_box:
continue
elif np.linalg.norm(_box[2, :] - _box[0, :], axis=-1) < min_size_box:
continue
if self.assume_straight_pages:
x, y, w, h = _box
# compute relative polygon to get rid of img shape
xmin, ymin, xmax, ymax = x / width, y / height, (x + w) / width, (y + h) / height
boxes.append([xmin, ymin, xmax, ymax, score])
else:
# compute relative box to get rid of img shape, in that case _box is a 4pt polygon
if not isinstance(_box, np.ndarray) and _box.shape == (4, 2):
raise AssertionError("When assume straight pages is false a box is a (4, 2) array (polygon)")
_box[:, 0] /= width
_box[:, 1] /= height
boxes.append(_box)
if not self.assume_straight_pages:
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 4, 2), dtype=pred.dtype)
else:
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype)
class _DBNet:
"""DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization"
<https://arxiv.org/pdf/1911.08947.pdf>`_.
Args:
----
feature extractor: the backbone serving as feature extractor
fpn_channels: number of channels each extracted feature maps is mapped to
"""
shrink_ratio = 0.4
thresh_min = 0.3
thresh_max = 0.7
min_size_box = 3
assume_straight_pages: bool = True
@staticmethod
def compute_distance(
xs: np.ndarray,
ys: np.ndarray,
a: np.ndarray,
b: np.ndarray,
eps: float = 1e-6,
) -> float:
"""Compute the distance for each point of the map (xs, ys) to the (a, b) segment
Args:
----
xs : map of x coordinates (height, width)
ys : map of y coordinates (height, width)
a: first point defining the [ab] segment
b: second point defining the [ab] segment
eps: epsilon to avoid division by zero
Returns:
-------
The computed distance
"""
square_dist_1 = np.square(xs - a[0]) + np.square(ys - a[1])
square_dist_2 = np.square(xs - b[0]) + np.square(ys - b[1])
square_dist = np.square(a[0] - b[0]) + np.square(a[1] - b[1])
cosin = (square_dist - square_dist_1 - square_dist_2) / (2 * np.sqrt(square_dist_1 * square_dist_2) + eps)
cosin = np.clip(cosin, -1.0, 1.0)
square_sin = 1 - np.square(cosin)
square_sin = np.nan_to_num(square_sin)
result = np.sqrt(square_dist_1 * square_dist_2 * square_sin / square_dist + eps)
result[cosin < 0] = np.sqrt(np.fmin(square_dist_1, square_dist_2))[cosin < 0]
return result
def draw_thresh_map(
self,
polygon: np.ndarray,
canvas: np.ndarray,
mask: np.ndarray,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Draw a polygon treshold map on a canvas, as described in the DB paper
Args:
----
polygon : array of coord., to draw the boundary of the polygon
canvas : threshold map to fill with polygons
mask : mask for training on threshold polygons
"""
if polygon.ndim != 2 or polygon.shape[1] != 2:
raise AttributeError("polygon should be a 2 dimensional array of coords")
# Augment polygon by shrink_ratio
polygon_shape = Polygon(polygon)
distance = polygon_shape.area * (1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length
subject = [tuple(coor) for coor in polygon] # Get coord as list of tuples
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
padded_polygon: np.ndarray = np.array(padding.Execute(distance)[0])
# Fill the mask with 1 on the new padded polygon
cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0) # type: ignore[call-overload]
# Get min/max to recover polygon after distance computation
xmin = padded_polygon[:, 0].min()
xmax = padded_polygon[:, 0].max()
ymin = padded_polygon[:, 1].min()
ymax = padded_polygon[:, 1].max()
width = xmax - xmin + 1
height = ymax - ymin + 1
# Get absolute polygon for distance computation
polygon[:, 0] = polygon[:, 0] - xmin
polygon[:, 1] = polygon[:, 1] - ymin
# Get absolute padded polygon
xs: np.ndarray = np.broadcast_to(np.linspace(0, width - 1, num=width).reshape(1, width), (height, width))
ys: np.ndarray = np.broadcast_to(np.linspace(0, height - 1, num=height).reshape(height, 1), (height, width))
# Compute distance map to fill the padded polygon
distance_map = np.zeros((polygon.shape[0], height, width), dtype=polygon.dtype)
for i in range(polygon.shape[0]):
j = (i + 1) % polygon.shape[0]
absolute_distance = self.compute_distance(xs, ys, polygon[i], polygon[j])
distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
distance_map = np.min(distance_map, axis=0)
# Clip the padded polygon inside the canvas
xmin_valid = min(max(0, xmin), canvas.shape[1] - 1)
xmax_valid = min(max(0, xmax), canvas.shape[1] - 1)
ymin_valid = min(max(0, ymin), canvas.shape[0] - 1)
ymax_valid = min(max(0, ymax), canvas.shape[0] - 1)
# Fill the canvas with the distances computed inside the valid padded polygon
canvas[ymin_valid : ymax_valid + 1, xmin_valid : xmax_valid + 1] = np.fmax(
1
- distance_map[
ymin_valid - ymin : ymax_valid - ymax + height, xmin_valid - xmin : xmax_valid - xmax + width
],
canvas[ymin_valid : ymax_valid + 1, xmin_valid : xmax_valid + 1],
)
return polygon, canvas, mask
def build_target(
self,
target: List[Dict[str, np.ndarray]],
output_shape: Tuple[int, int, int],
channels_last: bool = True,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
if any(t.dtype != np.float32 for tgt in target for t in tgt.values()):
raise AssertionError("the expected dtype of target 'boxes' entry is 'np.float32'.")
if any(np.any((t[:, :4] > 1) | (t[:, :4] < 0)) for tgt in target for t in tgt.values()):
raise ValueError("the 'boxes' entry of the target is expected to take values between 0 & 1.")
input_dtype = next(iter(target[0].values())).dtype if len(target) > 0 else np.float32
h: int
w: int
if channels_last:
h, w, num_classes = output_shape
else:
num_classes, h, w = output_shape
target_shape = (len(target), num_classes, h, w)
seg_target: np.ndarray = np.zeros(target_shape, dtype=np.uint8)
seg_mask: np.ndarray = np.ones(target_shape, dtype=bool)
thresh_target: np.ndarray = np.zeros(target_shape, dtype=np.float32)
thresh_mask: np.ndarray = np.zeros(target_shape, dtype=np.uint8)
for idx, tgt in enumerate(target):
for class_idx, _tgt in enumerate(tgt.values()):
# Draw each polygon on gt
if _tgt.shape[0] == 0:
# Empty image, full masked
seg_mask[idx, class_idx] = False
# Absolute bounding boxes
abs_boxes = _tgt.copy()
if abs_boxes.ndim == 3:
abs_boxes[:, :, 0] *= w
abs_boxes[:, :, 1] *= h
polys = abs_boxes
boxes_size = np.linalg.norm(abs_boxes[:, 2, :] - abs_boxes[:, 0, :], axis=-1)
abs_boxes = np.concatenate((abs_boxes.min(1), abs_boxes.max(1)), -1).round().astype(np.int32)
else:
abs_boxes[:, [0, 2]] *= w
abs_boxes[:, [1, 3]] *= h
abs_boxes = abs_boxes.round().astype(np.int32)
polys = np.stack(
[
abs_boxes[:, [0, 1]],
abs_boxes[:, [0, 3]],
abs_boxes[:, [2, 3]],
abs_boxes[:, [2, 1]],
],
axis=1,
)
boxes_size = np.minimum(abs_boxes[:, 2] - abs_boxes[:, 0], abs_boxes[:, 3] - abs_boxes[:, 1])
for poly, box, box_size in zip(polys, abs_boxes, boxes_size):
# Mask boxes that are too small
if box_size < self.min_size_box:
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
continue
# Negative shrink for gt, as described in paper
polygon = Polygon(poly)
distance = polygon.area * (1 - np.power(self.shrink_ratio, 2)) / polygon.length
subject = [tuple(coor) for coor in poly]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
shrunken = padding.Execute(-distance)
# Draw polygon on gt if it is valid
if len(shrunken) == 0:
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
continue
shrunken = np.array(shrunken[0]).reshape(-1, 2)
if shrunken.shape[0] <= 2 or not Polygon(shrunken).is_valid:
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
continue
cv2.fillPoly(seg_target[idx, class_idx], [shrunken.astype(np.int32)], 1.0) # type: ignore[call-overload]
# Draw on both thresh map and thresh mask
poly, thresh_target[idx, class_idx], thresh_mask[idx, class_idx] = self.draw_thresh_map(
poly, thresh_target[idx, class_idx], thresh_mask[idx, class_idx]
)
if channels_last:
seg_target = seg_target.transpose((0, 2, 3, 1))
seg_mask = seg_mask.transpose((0, 2, 3, 1))
thresh_target = thresh_target.transpose((0, 2, 3, 1))
thresh_mask = thresh_mask.transpose((0, 2, 3, 1))
thresh_target = thresh_target.astype(input_dtype) * (self.thresh_max - self.thresh_min) + self.thresh_min
seg_target = seg_target.astype(input_dtype)
seg_mask = seg_mask.astype(bool)
thresh_target = thresh_target.astype(input_dtype)
thresh_mask = thresh_mask.astype(bool)
return seg_target, seg_mask, thresh_target, thresh_mask
|