Spaces:
Runtime error
Runtime error
File size: 16,143 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.models._utils import IntermediateLayerGetter
from doctr.file_utils import CLASS_NAME
from ...classification import textnet_base, textnet_small, textnet_tiny
from ...modules.layers import FASTConvLayer
from ...utils import _bf16_to_float32, load_pretrained_params
from .base import _FAST, FASTPostProcessor
__all__ = ["FAST", "fast_tiny", "fast_small", "fast_base", "reparameterize"]
default_cfgs: Dict[str, Dict[str, Any]] = {
"fast_tiny": {
"input_shape": (3, 1024, 1024),
"mean": (0.798, 0.785, 0.772),
"std": (0.264, 0.2749, 0.287),
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_tiny-1acac421.pt&src=0",
},
"fast_small": {
"input_shape": (3, 1024, 1024),
"mean": (0.798, 0.785, 0.772),
"std": (0.264, 0.2749, 0.287),
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_small-10952cc1.pt&src=0",
},
"fast_base": {
"input_shape": (3, 1024, 1024),
"mean": (0.798, 0.785, 0.772),
"std": (0.264, 0.2749, 0.287),
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_base-688a8b34.pt&src=0",
},
}
class FastNeck(nn.Module):
"""Neck of the FAST architecture, composed of a series of 3x3 convolutions and upsampling layers.
Args:
----
in_channels: number of input channels
out_channels: number of output channels
"""
def __init__(
self,
in_channels: int,
out_channels: int = 128,
) -> None:
super().__init__()
self.reduction = nn.ModuleList([
FASTConvLayer(in_channels * scale, out_channels, kernel_size=3) for scale in [1, 2, 4, 8]
])
def _upsample(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return F.interpolate(x, size=y.shape[-2:], mode="bilinear")
def forward(self, x: torch.Tensor) -> torch.Tensor:
f1, f2, f3, f4 = x
f1, f2, f3, f4 = [reduction(f) for reduction, f in zip(self.reduction, (f1, f2, f3, f4))]
f2, f3, f4 = [self._upsample(f, f1) for f in (f2, f3, f4)]
f = torch.cat((f1, f2, f3, f4), 1)
return f
class FastHead(nn.Sequential):
"""Head of the FAST architecture
Args:
----
in_channels: number of input channels
num_classes: number of output classes
out_channels: number of output channels
dropout: dropout probability
"""
def __init__(
self,
in_channels: int,
num_classes: int,
out_channels: int = 128,
dropout: float = 0.1,
) -> None:
_layers: List[nn.Module] = [
FASTConvLayer(in_channels, out_channels, kernel_size=3),
nn.Dropout(dropout),
nn.Conv2d(out_channels, num_classes, kernel_size=1, bias=False),
]
super().__init__(*_layers)
class FAST(_FAST, nn.Module):
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
<https://arxiv.org/pdf/2111.02394.pdf>`_.
Args:
----
feat extractor: the backbone serving as feature extractor
bin_thresh: threshold for binarization
box_thresh: minimal objectness score to consider a box
dropout_prob: dropout probability
pooling_size: size of the pooling layer
assume_straight_pages: if True, fit straight bounding boxes only
exportable: onnx exportable returns only logits
cfg: the configuration dict of the model
class_names: list of class names
"""
def __init__(
self,
feat_extractor: IntermediateLayerGetter,
bin_thresh: float = 0.1,
box_thresh: float = 0.1,
dropout_prob: float = 0.1,
pooling_size: int = 4, # different from paper performs better on close text-rich images
assume_straight_pages: bool = True,
exportable: bool = False,
cfg: Optional[Dict[str, Any]] = {},
class_names: List[str] = [CLASS_NAME],
) -> None:
super().__init__()
self.class_names = class_names
num_classes: int = len(self.class_names)
self.cfg = cfg
self.exportable = exportable
self.assume_straight_pages = assume_straight_pages
self.feat_extractor = feat_extractor
# Identify the number of channels for the neck & head initialization
_is_training = self.feat_extractor.training
self.feat_extractor = self.feat_extractor.eval()
with torch.no_grad():
out = self.feat_extractor(torch.zeros((1, 3, 32, 32)))
feat_out_channels = [v.shape[1] for _, v in out.items()]
if _is_training:
self.feat_extractor = self.feat_extractor.train()
# Initialize neck & head
self.neck = FastNeck(feat_out_channels[0], feat_out_channels[1])
self.prob_head = FastHead(feat_out_channels[-1], num_classes, feat_out_channels[1], dropout_prob)
# NOTE: The post processing from the paper works not well for text-rich images
# so we use a modified version from DBNet
self.postprocessor = FASTPostProcessor(
assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh
)
# Pooling layer as erosion reversal as described in the paper
self.pooling = nn.MaxPool2d(kernel_size=pooling_size // 2 + 1, stride=1, padding=(pooling_size // 2) // 2)
for n, m in self.named_modules():
# Don't override the initialization of the backbone
if n.startswith("feat_extractor."):
continue
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight.data, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0)
m.bias.data.zero_()
def forward(
self,
x: torch.Tensor,
target: Optional[List[np.ndarray]] = None,
return_model_output: bool = False,
return_preds: bool = False,
) -> Dict[str, torch.Tensor]:
# Extract feature maps at different stages
feats = self.feat_extractor(x)
feats = [feats[str(idx)] for idx in range(len(feats))]
# Pass through the Neck & Head & Upsample
feat_concat = self.neck(feats)
logits = F.interpolate(self.prob_head(feat_concat), size=x.shape[-2:], mode="bilinear")
out: Dict[str, Any] = {}
if self.exportable:
out["logits"] = logits
return out
if return_model_output or target is None or return_preds:
prob_map = _bf16_to_float32(torch.sigmoid(self.pooling(logits)))
if return_model_output:
out["out_map"] = prob_map
if target is None or return_preds:
# Post-process boxes (keep only text predictions)
out["preds"] = [
dict(zip(self.class_names, preds))
for preds in self.postprocessor(prob_map.detach().cpu().permute((0, 2, 3, 1)).numpy())
]
if target is not None:
loss = self.compute_loss(logits, target)
out["loss"] = loss
return out
def compute_loss(
self,
out_map: torch.Tensor,
target: List[np.ndarray],
eps: float = 1e-6,
) -> torch.Tensor:
"""Compute fast loss, 2 x Dice loss where the text kernel loss is scaled by 0.5.
Args:
----
out_map: output feature map of the model of shape (N, num_classes, H, W)
target: list of dictionary where each dict has a `boxes` and a `flags` entry
eps: epsilon factor in dice loss
Returns:
-------
A loss tensor
"""
targets = self.build_target(target, out_map.shape[1:], False) # type: ignore[arg-type]
seg_target, seg_mask = torch.from_numpy(targets[0]), torch.from_numpy(targets[1])
shrunken_kernel = torch.from_numpy(targets[2]).to(out_map.device)
seg_target, seg_mask = seg_target.to(out_map.device), seg_mask.to(out_map.device)
def ohem_sample(score: torch.Tensor, gt: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
masks = []
for class_idx in range(gt.shape[0]):
pos_num = int(torch.sum(gt[class_idx] > 0.5)) - int(
torch.sum((gt[class_idx] > 0.5) & (mask[class_idx] <= 0.5))
)
neg_num = int(torch.sum(gt[class_idx] <= 0.5))
neg_num = int(min(pos_num * 3, neg_num))
if neg_num == 0 or pos_num == 0:
masks.append(mask[class_idx])
continue
neg_score_sorted, _ = torch.sort(-score[class_idx][gt[class_idx] <= 0.5])
threshold = -neg_score_sorted[neg_num - 1]
selected_mask = ((score[class_idx] >= threshold) | (gt[class_idx] > 0.5)) & (mask[class_idx] > 0.5)
masks.append(selected_mask)
# combine all masks to shape (len(masks), H, W)
return torch.stack(masks).unsqueeze(0).float()
if len(self.class_names) > 1:
kernels = torch.softmax(out_map, dim=1)
prob_map = torch.softmax(self.pooling(out_map), dim=1)
else:
kernels = torch.sigmoid(out_map)
prob_map = torch.sigmoid(self.pooling(out_map))
# As described in the paper, we use the Dice loss for the text segmentation map and the Dice loss scaled by 0.5.
selected_masks = torch.cat(
[ohem_sample(score, gt, mask) for score, gt, mask in zip(prob_map, seg_target, seg_mask)], 0
).float()
inter = (selected_masks * prob_map * seg_target).sum((0, 2, 3))
cardinality = (selected_masks * (prob_map + seg_target)).sum((0, 2, 3))
text_loss = (1 - 2 * inter / (cardinality + eps)).mean() * 0.5
# As described in the paper, we use the Dice loss for the text kernel map.
selected_masks = seg_target * seg_mask
inter = (selected_masks * kernels * shrunken_kernel).sum((0, 2, 3)) # noqa
cardinality = (selected_masks * (kernels + shrunken_kernel)).sum((0, 2, 3)) # noqa
kernel_loss = (1 - 2 * inter / (cardinality + eps)).mean()
return text_loss + kernel_loss
def reparameterize(model: Union[FAST, nn.Module]) -> FAST:
"""Fuse batchnorm and conv layers and reparameterize the model
args:
----
model: the FAST model to reparameterize
Returns:
-------
the reparameterized model
"""
last_conv = None
last_conv_name = None
for module in model.modules():
if hasattr(module, "reparameterize_layer"):
module.reparameterize_layer()
for name, child in model.named_children():
if isinstance(child, nn.BatchNorm2d):
# fuse batchnorm only if it is followed by a conv layer
if last_conv is None:
continue
conv_w = last_conv.weight
conv_b = last_conv.bias if last_conv.bias is not None else torch.zeros_like(child.running_mean)
factor = child.weight / torch.sqrt(child.running_var + child.eps)
last_conv.weight = nn.Parameter(conv_w * factor.reshape([last_conv.out_channels, 1, 1, 1]))
last_conv.bias = nn.Parameter((conv_b - child.running_mean) * factor + child.bias)
model._modules[last_conv_name] = last_conv
model._modules[name] = nn.Identity()
last_conv = None
elif isinstance(child, nn.Conv2d):
last_conv = child
last_conv_name = name
else:
reparameterize(child)
return model # type: ignore[return-value]
def _fast(
arch: str,
pretrained: bool,
backbone_fn: Callable[[bool], nn.Module],
feat_layers: List[str],
pretrained_backbone: bool = True,
ignore_keys: Optional[List[str]] = None,
**kwargs: Any,
) -> FAST:
pretrained_backbone = pretrained_backbone and not pretrained
# Build the feature extractor
feat_extractor = IntermediateLayerGetter(
backbone_fn(pretrained_backbone),
{layer_name: str(idx) for idx, layer_name in enumerate(feat_layers)},
)
if not kwargs.get("class_names", None):
kwargs["class_names"] = default_cfgs[arch].get("class_names", [CLASS_NAME])
else:
kwargs["class_names"] = sorted(kwargs["class_names"])
# Build the model
model = FAST(feat_extractor, cfg=default_cfgs[arch], **kwargs)
# Load pretrained parameters
if pretrained:
# The number of class_names is not the same as the number of classes in the pretrained model =>
# remove the layer weights
_ignore_keys = (
ignore_keys if kwargs["class_names"] != default_cfgs[arch].get("class_names", [CLASS_NAME]) else None
)
load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys)
return model
def fast_tiny(pretrained: bool = False, **kwargs: Any) -> FAST:
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
<https://arxiv.org/pdf/2111.02394.pdf>`_, using a tiny TextNet backbone.
>>> import torch
>>> from doctr.models import fast_tiny
>>> model = fast_tiny(pretrained=True)
>>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text detection dataset
**kwargs: keyword arguments of the DBNet architecture
Returns:
-------
text detection architecture
"""
return _fast(
"fast_tiny",
pretrained,
textnet_tiny,
["3", "4", "5", "6"],
ignore_keys=["prob_head.2.weight"],
**kwargs,
)
def fast_small(pretrained: bool = False, **kwargs: Any) -> FAST:
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
<https://arxiv.org/pdf/2111.02394.pdf>`_, using a small TextNet backbone.
>>> import torch
>>> from doctr.models import fast_small
>>> model = fast_small(pretrained=True)
>>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text detection dataset
**kwargs: keyword arguments of the DBNet architecture
Returns:
-------
text detection architecture
"""
return _fast(
"fast_small",
pretrained,
textnet_small,
["3", "4", "5", "6"],
ignore_keys=["prob_head.2.weight"],
**kwargs,
)
def fast_base(pretrained: bool = False, **kwargs: Any) -> FAST:
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
<https://arxiv.org/pdf/2111.02394.pdf>`_, using a base TextNet backbone.
>>> import torch
>>> from doctr.models import fast_base
>>> model = fast_base(pretrained=True)
>>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text detection dataset
**kwargs: keyword arguments of the DBNet architecture
Returns:
-------
text detection architecture
"""
return _fast(
"fast_base",
pretrained,
textnet_base,
["3", "4", "5", "6"],
ignore_keys=["prob_head.2.weight"],
**kwargs,
)
|