File size: 16,143 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.models._utils import IntermediateLayerGetter

from doctr.file_utils import CLASS_NAME

from ...classification import textnet_base, textnet_small, textnet_tiny
from ...modules.layers import FASTConvLayer
from ...utils import _bf16_to_float32, load_pretrained_params
from .base import _FAST, FASTPostProcessor

__all__ = ["FAST", "fast_tiny", "fast_small", "fast_base", "reparameterize"]


default_cfgs: Dict[str, Dict[str, Any]] = {
    "fast_tiny": {
        "input_shape": (3, 1024, 1024),
        "mean": (0.798, 0.785, 0.772),
        "std": (0.264, 0.2749, 0.287),
        "url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_tiny-1acac421.pt&src=0",
    },
    "fast_small": {
        "input_shape": (3, 1024, 1024),
        "mean": (0.798, 0.785, 0.772),
        "std": (0.264, 0.2749, 0.287),
        "url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_small-10952cc1.pt&src=0",
    },
    "fast_base": {
        "input_shape": (3, 1024, 1024),
        "mean": (0.798, 0.785, 0.772),
        "std": (0.264, 0.2749, 0.287),
        "url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_base-688a8b34.pt&src=0",
    },
}


class FastNeck(nn.Module):
    """Neck of the FAST architecture, composed of a series of 3x3 convolutions and upsampling layers.

    Args:
    ----
        in_channels: number of input channels
        out_channels: number of output channels
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int = 128,
    ) -> None:
        super().__init__()
        self.reduction = nn.ModuleList([
            FASTConvLayer(in_channels * scale, out_channels, kernel_size=3) for scale in [1, 2, 4, 8]
        ])

    def _upsample(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
        return F.interpolate(x, size=y.shape[-2:], mode="bilinear")

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        f1, f2, f3, f4 = x
        f1, f2, f3, f4 = [reduction(f) for reduction, f in zip(self.reduction, (f1, f2, f3, f4))]
        f2, f3, f4 = [self._upsample(f, f1) for f in (f2, f3, f4)]
        f = torch.cat((f1, f2, f3, f4), 1)
        return f


class FastHead(nn.Sequential):
    """Head of the FAST architecture

    Args:
    ----
        in_channels: number of input channels
        num_classes: number of output classes
        out_channels: number of output channels
        dropout: dropout probability
    """

    def __init__(
        self,
        in_channels: int,
        num_classes: int,
        out_channels: int = 128,
        dropout: float = 0.1,
    ) -> None:
        _layers: List[nn.Module] = [
            FASTConvLayer(in_channels, out_channels, kernel_size=3),
            nn.Dropout(dropout),
            nn.Conv2d(out_channels, num_classes, kernel_size=1, bias=False),
        ]
        super().__init__(*_layers)


class FAST(_FAST, nn.Module):
    """FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
    <https://arxiv.org/pdf/2111.02394.pdf>`_.

    Args:
    ----
        feat extractor: the backbone serving as feature extractor
        bin_thresh: threshold for binarization
        box_thresh: minimal objectness score to consider a box
        dropout_prob: dropout probability
        pooling_size: size of the pooling layer
        assume_straight_pages: if True, fit straight bounding boxes only
        exportable: onnx exportable returns only logits
        cfg: the configuration dict of the model
        class_names: list of class names
    """

    def __init__(
        self,
        feat_extractor: IntermediateLayerGetter,
        bin_thresh: float = 0.1,
        box_thresh: float = 0.1,
        dropout_prob: float = 0.1,
        pooling_size: int = 4,  # different from paper performs better on close text-rich images
        assume_straight_pages: bool = True,
        exportable: bool = False,
        cfg: Optional[Dict[str, Any]] = {},
        class_names: List[str] = [CLASS_NAME],
    ) -> None:
        super().__init__()
        self.class_names = class_names
        num_classes: int = len(self.class_names)
        self.cfg = cfg

        self.exportable = exportable
        self.assume_straight_pages = assume_straight_pages

        self.feat_extractor = feat_extractor
        # Identify the number of channels for the neck & head initialization
        _is_training = self.feat_extractor.training
        self.feat_extractor = self.feat_extractor.eval()
        with torch.no_grad():
            out = self.feat_extractor(torch.zeros((1, 3, 32, 32)))
            feat_out_channels = [v.shape[1] for _, v in out.items()]

        if _is_training:
            self.feat_extractor = self.feat_extractor.train()

        # Initialize neck & head
        self.neck = FastNeck(feat_out_channels[0], feat_out_channels[1])
        self.prob_head = FastHead(feat_out_channels[-1], num_classes, feat_out_channels[1], dropout_prob)

        # NOTE: The post processing from the paper works not well for text-rich images
        # so we use a modified version from DBNet
        self.postprocessor = FASTPostProcessor(
            assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh
        )

        # Pooling layer as erosion reversal as described in the paper
        self.pooling = nn.MaxPool2d(kernel_size=pooling_size // 2 + 1, stride=1, padding=(pooling_size // 2) // 2)

        for n, m in self.named_modules():
            # Don't override the initialization of the backbone
            if n.startswith("feat_extractor."):
                continue
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight.data, mode="fan_out", nonlinearity="relu")
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1.0)
                m.bias.data.zero_()

    def forward(
        self,
        x: torch.Tensor,
        target: Optional[List[np.ndarray]] = None,
        return_model_output: bool = False,
        return_preds: bool = False,
    ) -> Dict[str, torch.Tensor]:
        # Extract feature maps at different stages
        feats = self.feat_extractor(x)
        feats = [feats[str(idx)] for idx in range(len(feats))]
        # Pass through the Neck & Head & Upsample
        feat_concat = self.neck(feats)
        logits = F.interpolate(self.prob_head(feat_concat), size=x.shape[-2:], mode="bilinear")

        out: Dict[str, Any] = {}
        if self.exportable:
            out["logits"] = logits
            return out

        if return_model_output or target is None or return_preds:
            prob_map = _bf16_to_float32(torch.sigmoid(self.pooling(logits)))

        if return_model_output:
            out["out_map"] = prob_map

        if target is None or return_preds:
            # Post-process boxes (keep only text predictions)
            out["preds"] = [
                dict(zip(self.class_names, preds))
                for preds in self.postprocessor(prob_map.detach().cpu().permute((0, 2, 3, 1)).numpy())
            ]

        if target is not None:
            loss = self.compute_loss(logits, target)
            out["loss"] = loss

        return out

    def compute_loss(
        self,
        out_map: torch.Tensor,
        target: List[np.ndarray],
        eps: float = 1e-6,
    ) -> torch.Tensor:
        """Compute fast loss, 2 x Dice loss where the text kernel loss is scaled by 0.5.

        Args:
        ----
            out_map: output feature map of the model of shape (N, num_classes, H, W)
            target: list of dictionary where each dict has a `boxes` and a `flags` entry
            eps: epsilon factor in dice loss

        Returns:
        -------
            A loss tensor
        """
        targets = self.build_target(target, out_map.shape[1:], False)  # type: ignore[arg-type]

        seg_target, seg_mask = torch.from_numpy(targets[0]), torch.from_numpy(targets[1])
        shrunken_kernel = torch.from_numpy(targets[2]).to(out_map.device)
        seg_target, seg_mask = seg_target.to(out_map.device), seg_mask.to(out_map.device)

        def ohem_sample(score: torch.Tensor, gt: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
            masks = []
            for class_idx in range(gt.shape[0]):
                pos_num = int(torch.sum(gt[class_idx] > 0.5)) - int(
                    torch.sum((gt[class_idx] > 0.5) & (mask[class_idx] <= 0.5))
                )
                neg_num = int(torch.sum(gt[class_idx] <= 0.5))
                neg_num = int(min(pos_num * 3, neg_num))

                if neg_num == 0 or pos_num == 0:
                    masks.append(mask[class_idx])
                    continue

                neg_score_sorted, _ = torch.sort(-score[class_idx][gt[class_idx] <= 0.5])
                threshold = -neg_score_sorted[neg_num - 1]

                selected_mask = ((score[class_idx] >= threshold) | (gt[class_idx] > 0.5)) & (mask[class_idx] > 0.5)
                masks.append(selected_mask)
            # combine all masks to shape (len(masks), H, W)
            return torch.stack(masks).unsqueeze(0).float()

        if len(self.class_names) > 1:
            kernels = torch.softmax(out_map, dim=1)
            prob_map = torch.softmax(self.pooling(out_map), dim=1)
        else:
            kernels = torch.sigmoid(out_map)
            prob_map = torch.sigmoid(self.pooling(out_map))

        # As described in the paper, we use the Dice loss for the text segmentation map and the Dice loss scaled by 0.5.
        selected_masks = torch.cat(
            [ohem_sample(score, gt, mask) for score, gt, mask in zip(prob_map, seg_target, seg_mask)], 0
        ).float()
        inter = (selected_masks * prob_map * seg_target).sum((0, 2, 3))
        cardinality = (selected_masks * (prob_map + seg_target)).sum((0, 2, 3))
        text_loss = (1 - 2 * inter / (cardinality + eps)).mean() * 0.5

        # As described in the paper, we use the Dice loss for the text kernel map.
        selected_masks = seg_target * seg_mask
        inter = (selected_masks * kernels * shrunken_kernel).sum((0, 2, 3))  # noqa
        cardinality = (selected_masks * (kernels + shrunken_kernel)).sum((0, 2, 3))  # noqa
        kernel_loss = (1 - 2 * inter / (cardinality + eps)).mean()

        return text_loss + kernel_loss


def reparameterize(model: Union[FAST, nn.Module]) -> FAST:
    """Fuse batchnorm and conv layers and reparameterize the model

    args:
    ----
        model: the FAST model to reparameterize

    Returns:
    -------
        the reparameterized model
    """
    last_conv = None
    last_conv_name = None

    for module in model.modules():
        if hasattr(module, "reparameterize_layer"):
            module.reparameterize_layer()

    for name, child in model.named_children():
        if isinstance(child, nn.BatchNorm2d):
            # fuse batchnorm only if it is followed by a conv layer
            if last_conv is None:
                continue
            conv_w = last_conv.weight
            conv_b = last_conv.bias if last_conv.bias is not None else torch.zeros_like(child.running_mean)

            factor = child.weight / torch.sqrt(child.running_var + child.eps)
            last_conv.weight = nn.Parameter(conv_w * factor.reshape([last_conv.out_channels, 1, 1, 1]))
            last_conv.bias = nn.Parameter((conv_b - child.running_mean) * factor + child.bias)
            model._modules[last_conv_name] = last_conv
            model._modules[name] = nn.Identity()
            last_conv = None
        elif isinstance(child, nn.Conv2d):
            last_conv = child
            last_conv_name = name
        else:
            reparameterize(child)

    return model  # type: ignore[return-value]


def _fast(
    arch: str,
    pretrained: bool,
    backbone_fn: Callable[[bool], nn.Module],
    feat_layers: List[str],
    pretrained_backbone: bool = True,
    ignore_keys: Optional[List[str]] = None,
    **kwargs: Any,
) -> FAST:
    pretrained_backbone = pretrained_backbone and not pretrained

    # Build the feature extractor
    feat_extractor = IntermediateLayerGetter(
        backbone_fn(pretrained_backbone),
        {layer_name: str(idx) for idx, layer_name in enumerate(feat_layers)},
    )

    if not kwargs.get("class_names", None):
        kwargs["class_names"] = default_cfgs[arch].get("class_names", [CLASS_NAME])
    else:
        kwargs["class_names"] = sorted(kwargs["class_names"])
    # Build the model
    model = FAST(feat_extractor, cfg=default_cfgs[arch], **kwargs)
    # Load pretrained parameters
    if pretrained:
        # The number of class_names is not the same as the number of classes in the pretrained model =>
        # remove the layer weights
        _ignore_keys = (
            ignore_keys if kwargs["class_names"] != default_cfgs[arch].get("class_names", [CLASS_NAME]) else None
        )
        load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys)

    return model


def fast_tiny(pretrained: bool = False, **kwargs: Any) -> FAST:
    """FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
    <https://arxiv.org/pdf/2111.02394.pdf>`_, using a tiny TextNet backbone.

    >>> import torch
    >>> from doctr.models import fast_tiny
    >>> model = fast_tiny(pretrained=True)
    >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained (bool): If True, returns a model pre-trained on our text detection dataset
        **kwargs: keyword arguments of the DBNet architecture

    Returns:
    -------
        text detection architecture
    """
    return _fast(
        "fast_tiny",
        pretrained,
        textnet_tiny,
        ["3", "4", "5", "6"],
        ignore_keys=["prob_head.2.weight"],
        **kwargs,
    )


def fast_small(pretrained: bool = False, **kwargs: Any) -> FAST:
    """FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
    <https://arxiv.org/pdf/2111.02394.pdf>`_, using a small TextNet backbone.

    >>> import torch
    >>> from doctr.models import fast_small
    >>> model = fast_small(pretrained=True)
    >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained (bool): If True, returns a model pre-trained on our text detection dataset
        **kwargs: keyword arguments of the DBNet architecture

    Returns:
    -------
        text detection architecture
    """
    return _fast(
        "fast_small",
        pretrained,
        textnet_small,
        ["3", "4", "5", "6"],
        ignore_keys=["prob_head.2.weight"],
        **kwargs,
    )


def fast_base(pretrained: bool = False, **kwargs: Any) -> FAST:
    """FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
    <https://arxiv.org/pdf/2111.02394.pdf>`_, using a base TextNet backbone.

    >>> import torch
    >>> from doctr.models import fast_base
    >>> model = fast_base(pretrained=True)
    >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained (bool): If True, returns a model pre-trained on our text detection dataset
        **kwargs: keyword arguments of the DBNet architecture

    Returns:
    -------
        text detection architecture
    """
    return _fast(
        "fast_base",
        pretrained,
        textnet_base,
        ["3", "4", "5", "6"],
        ignore_keys=["prob_head.2.weight"],
        **kwargs,
    )