Spaces:
Runtime error
Runtime error
File size: 9,113 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
import math
from typing import Any, Callable, Optional, Tuple
import tensorflow as tf
from tensorflow.keras import layers
from doctr.utils.repr import NestedObject
__all__ = ["Decoder", "PositionalEncoding", "EncoderBlock", "PositionwiseFeedForward", "MultiHeadAttention"]
tf.config.run_functions_eagerly(True)
class PositionalEncoding(layers.Layer, NestedObject):
"""Compute positional encoding"""
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000) -> None:
super(PositionalEncoding, self).__init__()
self.dropout = layers.Dropout(rate=dropout)
# Compute the positional encodings once in log space.
pe = tf.Variable(tf.zeros((max_len, d_model)))
position = tf.cast(
tf.expand_dims(tf.experimental.numpy.arange(start=0, stop=max_len), axis=1), dtype=tf.float32
)
div_term = tf.math.exp(
tf.cast(tf.experimental.numpy.arange(start=0, stop=d_model, step=2), dtype=tf.float32)
* -(math.log(10000.0) / d_model)
)
pe = pe.numpy()
pe[:, 0::2] = tf.math.sin(position * div_term)
pe[:, 1::2] = tf.math.cos(position * div_term)
self.pe = tf.expand_dims(tf.convert_to_tensor(pe), axis=0)
def call(
self,
x: tf.Tensor,
**kwargs: Any,
) -> tf.Tensor:
"""Forward pass
Args:
----
x: embeddings (batch, max_len, d_model)
**kwargs: additional arguments
Returns
-------
positional embeddings (batch, max_len, d_model)
"""
if x.dtype == tf.float16: # amp fix: cast to half
x = x + tf.cast(self.pe[:, : x.shape[1]], dtype=tf.half)
else:
x = x + self.pe[:, : x.shape[1]]
return self.dropout(x, **kwargs)
@tf.function
def scaled_dot_product_attention(
query: tf.Tensor, key: tf.Tensor, value: tf.Tensor, mask: Optional[tf.Tensor] = None
) -> Tuple[tf.Tensor, tf.Tensor]:
"""Scaled Dot-Product Attention"""
scores = tf.matmul(query, tf.transpose(key, perm=[0, 1, 3, 2])) / math.sqrt(query.shape[-1])
if mask is not None:
# NOTE: to ensure the ONNX compatibility, tf.where works only with bool type condition
scores = tf.where(mask == False, float("-inf"), scores) # noqa: E712
p_attn = tf.nn.softmax(scores, axis=-1)
return tf.matmul(p_attn, value), p_attn
class PositionwiseFeedForward(layers.Layer, NestedObject):
"""Position-wise Feed-Forward Network"""
def __init__(
self, d_model: int, ffd: int, dropout=0.1, activation_fct: Callable[[Any], Any] = layers.ReLU()
) -> None:
super(PositionwiseFeedForward, self).__init__()
self.activation_fct = activation_fct
self.first_linear = layers.Dense(ffd, kernel_initializer=tf.initializers.he_uniform())
self.sec_linear = layers.Dense(d_model, kernel_initializer=tf.initializers.he_uniform())
self.dropout = layers.Dropout(rate=dropout)
def call(self, x: tf.Tensor, **kwargs: Any) -> tf.Tensor:
x = self.first_linear(x, **kwargs)
x = self.activation_fct(x)
x = self.dropout(x, **kwargs)
x = self.sec_linear(x, **kwargs)
x = self.dropout(x, **kwargs)
return x
class MultiHeadAttention(layers.Layer, NestedObject):
"""Multi-Head Attention"""
def __init__(self, num_heads: int, d_model: int, dropout: float = 0.1) -> None:
super().__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_k = d_model // num_heads
self.num_heads = num_heads
self.linear_layers = [layers.Dense(d_model, kernel_initializer=tf.initializers.he_uniform()) for _ in range(3)]
self.output_linear = layers.Dense(d_model, kernel_initializer=tf.initializers.he_uniform())
def call(
self,
query: tf.Tensor,
key: tf.Tensor,
value: tf.Tensor,
mask: tf.Tensor = None,
**kwargs: Any,
) -> tf.Tensor:
batch_size = query.shape[0]
# linear projections of Q, K, V
query, key, value = [
tf.transpose(
tf.reshape(linear(x, **kwargs), shape=[batch_size, -1, self.num_heads, self.d_k]), perm=[0, 2, 1, 3]
)
for linear, x in zip(self.linear_layers, (query, key, value))
]
# apply attention on all the projected vectors in batch
x, attn = scaled_dot_product_attention(query, key, value, mask=mask)
# Concat attention heads
x = tf.transpose(x, perm=[0, 2, 1, 3])
x = tf.reshape(x, shape=[batch_size, -1, self.num_heads * self.d_k])
return self.output_linear(x, **kwargs)
class EncoderBlock(layers.Layer, NestedObject):
"""Transformer Encoder Block"""
def __init__(
self,
num_layers: int,
num_heads: int,
d_model: int,
dff: int, # hidden dimension of the feedforward network
dropout: float,
activation_fct: Callable[[Any], Any] = layers.ReLU(),
) -> None:
super().__init__()
self.num_layers = num_layers
self.layer_norm_input = layers.LayerNormalization(epsilon=1e-5)
self.layer_norm_attention = layers.LayerNormalization(epsilon=1e-5)
self.layer_norm_output = layers.LayerNormalization(epsilon=1e-5)
self.dropout = layers.Dropout(rate=dropout)
self.attention = [MultiHeadAttention(num_heads, d_model, dropout) for _ in range(self.num_layers)]
self.position_feed_forward = [
PositionwiseFeedForward(d_model, dff, dropout, activation_fct) for _ in range(self.num_layers)
]
def call(self, x: tf.Tensor, mask: Optional[tf.Tensor] = None, **kwargs: Any) -> tf.Tensor:
output = x
for i in range(self.num_layers):
normed_output = self.layer_norm_input(output, **kwargs)
output = output + self.dropout(
self.attention[i](normed_output, normed_output, normed_output, mask, **kwargs),
**kwargs,
)
normed_output = self.layer_norm_attention(output, **kwargs)
output = output + self.dropout(self.position_feed_forward[i](normed_output, **kwargs), **kwargs)
# (batch_size, seq_len, d_model)
return self.layer_norm_output(output, **kwargs)
class Decoder(layers.Layer, NestedObject):
"""Transformer Decoder"""
def __init__(
self,
num_layers: int,
num_heads: int,
d_model: int,
vocab_size: int,
dropout: float = 0.2,
dff: int = 2048, # hidden dimension of the feedforward network
maximum_position_encoding: int = 50,
) -> None:
super(Decoder, self).__init__()
self.num_layers = num_layers
self.d_model = d_model
self.layer_norm_input = layers.LayerNormalization(epsilon=1e-5)
self.layer_norm_masked_attention = layers.LayerNormalization(epsilon=1e-5)
self.layer_norm_attention = layers.LayerNormalization(epsilon=1e-5)
self.layer_norm_output = layers.LayerNormalization(epsilon=1e-5)
self.dropout = layers.Dropout(rate=dropout)
self.embed = layers.Embedding(vocab_size, d_model)
self.positional_encoding = PositionalEncoding(d_model, dropout, maximum_position_encoding)
self.attention = [MultiHeadAttention(num_heads, d_model, dropout) for _ in range(self.num_layers)]
self.source_attention = [MultiHeadAttention(num_heads, d_model, dropout) for _ in range(self.num_layers)]
self.position_feed_forward = [PositionwiseFeedForward(d_model, dff, dropout) for _ in range(self.num_layers)]
def call(
self,
tgt: tf.Tensor,
memory: tf.Tensor,
source_mask: Optional[tf.Tensor] = None,
target_mask: Optional[tf.Tensor] = None,
**kwargs: Any,
) -> tf.Tensor:
tgt = self.embed(tgt, **kwargs) * math.sqrt(self.d_model)
pos_enc_tgt = self.positional_encoding(tgt, **kwargs)
output = pos_enc_tgt
for i in range(self.num_layers):
normed_output = self.layer_norm_input(output, **kwargs)
output = output + self.dropout(
self.attention[i](normed_output, normed_output, normed_output, target_mask, **kwargs),
**kwargs,
)
normed_output = self.layer_norm_masked_attention(output, **kwargs)
output = output + self.dropout(
self.source_attention[i](normed_output, memory, memory, source_mask, **kwargs),
**kwargs,
)
normed_output = self.layer_norm_attention(output, **kwargs)
output = output + self.dropout(self.position_feed_forward[i](normed_output, **kwargs), **kwargs)
# (batch_size, seq_len, d_model)
return self.layer_norm_output(output, **kwargs)
|