Spaces:
Runtime error
Runtime error
File size: 9,568 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Tuple
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.models._utils import IntermediateLayerGetter
from doctr.datasets import VOCABS
from ...classification import vit_b, vit_s
from ...utils.pytorch import _bf16_to_float32, load_pretrained_params
from .base import _ViTSTR, _ViTSTRPostProcessor
__all__ = ["ViTSTR", "vitstr_small", "vitstr_base"]
default_cfgs: Dict[str, Dict[str, Any]] = {
"vitstr_small": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (3, 32, 128),
"vocab": VOCABS["french"],
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/vitstr_small-fcd12655.pt&src=0",
},
"vitstr_base": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (3, 32, 128),
"vocab": VOCABS["french"],
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/vitstr_base-50b21df2.pt&src=0",
},
}
class ViTSTR(_ViTSTR, nn.Module):
"""Implements a ViTSTR architecture as described in `"Vision Transformer for Fast and
Efficient Scene Text Recognition" <https://arxiv.org/pdf/2105.08582.pdf>`_.
Args:
----
feature_extractor: the backbone serving as feature extractor
vocab: vocabulary used for encoding
embedding_units: number of embedding units
max_length: maximum word length handled by the model
dropout_prob: dropout probability of the encoder LSTM
input_shape: input shape of the image
exportable: onnx exportable returns only logits
cfg: dictionary containing information about the model
"""
def __init__(
self,
feature_extractor,
vocab: str,
embedding_units: int,
max_length: int = 32, # different from paper
input_shape: Tuple[int, int, int] = (3, 32, 128), # different from paper
exportable: bool = False,
cfg: Optional[Dict[str, Any]] = None,
) -> None:
super().__init__()
self.vocab = vocab
self.exportable = exportable
self.cfg = cfg
self.max_length = max_length + 2 # +2 for SOS and EOS
self.feat_extractor = feature_extractor
self.head = nn.Linear(embedding_units, len(self.vocab) + 1) # +1 for EOS
self.postprocessor = ViTSTRPostProcessor(vocab=self.vocab)
def forward(
self,
x: torch.Tensor,
target: Optional[List[str]] = None,
return_model_output: bool = False,
return_preds: bool = False,
) -> Dict[str, Any]:
features = self.feat_extractor(x)["features"] # (batch_size, patches_seqlen, d_model)
if target is not None:
_gt, _seq_len = self.build_target(target)
gt, seq_len = torch.from_numpy(_gt).to(dtype=torch.long), torch.tensor(_seq_len)
gt, seq_len = gt.to(x.device), seq_len.to(x.device)
if self.training and target is None:
raise ValueError("Need to provide labels during training")
# borrowed from : https://github.com/baudm/parseq/blob/main/strhub/models/vitstr/model.py
features = features[:, : self.max_length] # (batch_size, max_length, d_model)
B, N, E = features.size()
features = features.reshape(B * N, E)
logits = self.head(features).view(B, N, len(self.vocab) + 1) # (batch_size, max_length, vocab + 1)
decoded_features = _bf16_to_float32(logits[:, 1:]) # remove cls_token
out: Dict[str, Any] = {}
if self.exportable:
out["logits"] = decoded_features
return out
if return_model_output:
out["out_map"] = decoded_features
if target is None or return_preds:
# Post-process boxes
out["preds"] = self.postprocessor(decoded_features)
if target is not None:
out["loss"] = self.compute_loss(decoded_features, gt, seq_len)
return out
@staticmethod
def compute_loss(
model_output: torch.Tensor,
gt: torch.Tensor,
seq_len: torch.Tensor,
) -> torch.Tensor:
"""Compute categorical cross-entropy loss for the model.
Sequences are masked after the EOS character.
Args:
----
model_output: predicted logits of the model
gt: the encoded tensor with gt labels
seq_len: lengths of each gt word inside the batch
Returns:
-------
The loss of the model on the batch
"""
# Input length : number of steps
input_len = model_output.shape[1]
# Add one for additional <eos> token (sos disappear in shift!)
seq_len = seq_len + 1
# Compute loss: don't forget to shift gt! Otherwise the model learns to output the gt[t-1]!
# The "masked" first gt char is <sos>.
cce = F.cross_entropy(model_output.permute(0, 2, 1), gt[:, 1:], reduction="none")
# Compute mask
mask_2d = torch.arange(input_len, device=model_output.device)[None, :] >= seq_len[:, None]
cce[mask_2d] = 0
ce_loss = cce.sum(1) / seq_len.to(dtype=model_output.dtype)
return ce_loss.mean()
class ViTSTRPostProcessor(_ViTSTRPostProcessor):
"""Post processor for ViTSTR architecture
Args:
----
vocab: string containing the ordered sequence of supported characters
"""
def __call__(
self,
logits: torch.Tensor,
) -> List[Tuple[str, float]]:
# compute pred with argmax for attention models
out_idxs = logits.argmax(-1)
preds_prob = torch.softmax(logits, -1).max(dim=-1)[0]
# Manual decoding
word_values = [
"".join(self._embedding[idx] for idx in encoded_seq).split("<eos>")[0]
for encoded_seq in out_idxs.cpu().numpy()
]
# compute probabilties for each word up to the EOS token
probs = [
preds_prob[i, : len(word)].clip(0, 1).mean().item() if word else 0.0 for i, word in enumerate(word_values)
]
return list(zip(word_values, probs))
def _vitstr(
arch: str,
pretrained: bool,
backbone_fn: Callable[[bool], nn.Module],
layer: str,
ignore_keys: Optional[List[str]] = None,
**kwargs: Any,
) -> ViTSTR:
# Patch the config
_cfg = deepcopy(default_cfgs[arch])
_cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"])
_cfg["input_shape"] = kwargs.get("input_shape", _cfg["input_shape"])
patch_size = kwargs.get("patch_size", (4, 8))
kwargs["vocab"] = _cfg["vocab"]
kwargs["input_shape"] = _cfg["input_shape"]
# Feature extractor
feat_extractor = IntermediateLayerGetter(
# NOTE: we don't use a pretrained backbone for non-rectangular patches to avoid the pos embed mismatch
backbone_fn(False, input_shape=_cfg["input_shape"], patch_size=patch_size), # type: ignore[call-arg]
{layer: "features"},
)
kwargs.pop("patch_size", None)
kwargs.pop("pretrained_backbone", None)
# Build the model
model = ViTSTR(feat_extractor, cfg=_cfg, **kwargs)
# Load pretrained parameters
if pretrained:
# The number of classes is not the same as the number of classes in the pretrained model =>
# remove the last layer weights
_ignore_keys = ignore_keys if _cfg["vocab"] != default_cfgs[arch]["vocab"] else None
load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys)
return model
def vitstr_small(pretrained: bool = False, **kwargs: Any) -> ViTSTR:
"""ViTSTR-Small as described in `"Vision Transformer for Fast and Efficient Scene Text Recognition"
<https://arxiv.org/pdf/2105.08582.pdf>`_.
>>> import torch
>>> from doctr.models import vitstr_small
>>> model = vitstr_small(pretrained=False)
>>> input_tensor = torch.rand((1, 3, 32, 128))
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text recognition dataset
kwargs: keyword arguments of the ViTSTR architecture
Returns:
-------
text recognition architecture
"""
return _vitstr(
"vitstr_small",
pretrained,
vit_s,
"1",
embedding_units=384,
patch_size=(4, 8),
ignore_keys=["head.weight", "head.bias"],
**kwargs,
)
def vitstr_base(pretrained: bool = False, **kwargs: Any) -> ViTSTR:
"""ViTSTR-Base as described in `"Vision Transformer for Fast and Efficient Scene Text Recognition"
<https://arxiv.org/pdf/2105.08582.pdf>`_.
>>> import torch
>>> from doctr.models import vitstr_base
>>> model = vitstr_base(pretrained=False)
>>> input_tensor = torch.rand((1, 3, 32, 128))
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text recognition dataset
kwargs: keyword arguments of the ViTSTR architecture
Returns:
-------
text recognition architecture
"""
return _vitstr(
"vitstr_base",
pretrained,
vit_b,
"1",
embedding_units=768,
patch_size=(4, 8),
ignore_keys=["head.weight", "head.bias"],
**kwargs,
)
|