File size: 10,937 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

import math
from typing import Optional, Tuple, Union

import numpy as np
import torch
from PIL.Image import Image
from torch.nn.functional import pad
from torchvision.transforms import functional as F
from torchvision.transforms import transforms as T

from ..functional.pytorch import random_shadow

__all__ = ["Resize", "GaussianNoise", "ChannelShuffle", "RandomHorizontalFlip", "RandomShadow", "RandomResize"]


class Resize(T.Resize):
    """Resize the input image to the given size"""

    def __init__(
        self,
        size: Union[int, Tuple[int, int]],
        interpolation=F.InterpolationMode.BILINEAR,
        preserve_aspect_ratio: bool = False,
        symmetric_pad: bool = False,
    ) -> None:
        super().__init__(size, interpolation, antialias=True)
        self.preserve_aspect_ratio = preserve_aspect_ratio
        self.symmetric_pad = symmetric_pad

        if not isinstance(self.size, (int, tuple, list)):
            raise AssertionError("size should be either a tuple, a list or an int")

    def forward(
        self,
        img: torch.Tensor,
        target: Optional[np.ndarray] = None,
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, np.ndarray]]:
        if isinstance(self.size, int):
            target_ratio = img.shape[-2] / img.shape[-1]
        else:
            target_ratio = self.size[0] / self.size[1]
        actual_ratio = img.shape[-2] / img.shape[-1]

        if not self.preserve_aspect_ratio or (target_ratio == actual_ratio and (isinstance(self.size, (tuple, list)))):
            # If we don't preserve the aspect ratio or the wanted aspect ratio is the same than the original one
            # We can use with the regular resize
            if target is not None:
                return super().forward(img), target
            return super().forward(img)
        else:
            # Resize
            if isinstance(self.size, (tuple, list)):
                if actual_ratio > target_ratio:
                    tmp_size = (self.size[0], max(int(self.size[0] / actual_ratio), 1))
                else:
                    tmp_size = (max(int(self.size[1] * actual_ratio), 1), self.size[1])
            elif isinstance(self.size, int):  # self.size is the longest side, infer the other
                if img.shape[-2] <= img.shape[-1]:
                    tmp_size = (max(int(self.size * actual_ratio), 1), self.size)
                else:
                    tmp_size = (self.size, max(int(self.size / actual_ratio), 1))

            # Scale image
            img = F.resize(img, tmp_size, self.interpolation, antialias=True)
            raw_shape = img.shape[-2:]
            if isinstance(self.size, (tuple, list)):
                # Pad (inverted in pytorch)
                _pad = (0, self.size[1] - img.shape[-1], 0, self.size[0] - img.shape[-2])
                if self.symmetric_pad:
                    half_pad = (math.ceil(_pad[1] / 2), math.ceil(_pad[3] / 2))
                    _pad = (half_pad[0], _pad[1] - half_pad[0], half_pad[1], _pad[3] - half_pad[1])
                img = pad(img, _pad)

            # In case boxes are provided, resize boxes if needed (for detection task if preserve aspect ratio)
            if target is not None:
                if self.preserve_aspect_ratio:
                    # Get absolute coords
                    if target.shape[1:] == (4,):
                        if isinstance(self.size, (tuple, list)) and self.symmetric_pad:
                            if np.max(target) <= 1:
                                offset = half_pad[0] / img.shape[-1], half_pad[1] / img.shape[-2]
                            target[:, [0, 2]] = offset[0] + target[:, [0, 2]] * raw_shape[-1] / img.shape[-1]
                            target[:, [1, 3]] = offset[1] + target[:, [1, 3]] * raw_shape[-2] / img.shape[-2]
                        else:
                            target[:, [0, 2]] *= raw_shape[-1] / img.shape[-1]
                            target[:, [1, 3]] *= raw_shape[-2] / img.shape[-2]
                    elif target.shape[1:] == (4, 2):
                        if isinstance(self.size, (tuple, list)) and self.symmetric_pad:
                            if np.max(target) <= 1:
                                offset = half_pad[0] / img.shape[-1], half_pad[1] / img.shape[-2]
                            target[..., 0] = offset[0] + target[..., 0] * raw_shape[-1] / img.shape[-1]
                            target[..., 1] = offset[1] + target[..., 1] * raw_shape[-2] / img.shape[-2]
                        else:
                            target[..., 0] *= raw_shape[-1] / img.shape[-1]
                            target[..., 1] *= raw_shape[-2] / img.shape[-2]
                    else:
                        raise AssertionError
                return img, target

            return img

    def __repr__(self) -> str:
        interpolate_str = self.interpolation.value
        _repr = f"output_size={self.size}, interpolation='{interpolate_str}'"
        if self.preserve_aspect_ratio:
            _repr += f", preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}"
        return f"{self.__class__.__name__}({_repr})"


class GaussianNoise(torch.nn.Module):
    """Adds Gaussian Noise to the input tensor

    >>> import torch
    >>> from doctr.transforms import GaussianNoise
    >>> transfo = GaussianNoise(0., 1.)
    >>> out = transfo(torch.rand((3, 224, 224)))

    Args:
    ----
        mean : mean of the gaussian distribution
        std : std of the gaussian distribution
    """

    def __init__(self, mean: float = 0.0, std: float = 1.0) -> None:
        super().__init__()
        self.std = std
        self.mean = mean

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # Reshape the distribution
        noise = self.mean + 2 * self.std * torch.rand(x.shape, device=x.device) - self.std
        if x.dtype == torch.uint8:
            return (x + 255 * noise).round().clamp(0, 255).to(dtype=torch.uint8)
        else:
            return (x + noise.to(dtype=x.dtype)).clamp(0, 1)

    def extra_repr(self) -> str:
        return f"mean={self.mean}, std={self.std}"


class ChannelShuffle(torch.nn.Module):
    """Randomly shuffle channel order of a given image"""

    def __init__(self):
        super().__init__()

    def forward(self, img: torch.Tensor) -> torch.Tensor:
        # Get a random order
        chan_order = torch.rand(img.shape[0]).argsort()
        return img[chan_order]


class RandomHorizontalFlip(T.RandomHorizontalFlip):
    """Randomly flip the input image horizontally"""

    def forward(
        self, img: Union[torch.Tensor, Image], target: np.ndarray
    ) -> Tuple[Union[torch.Tensor, Image], np.ndarray]:
        if torch.rand(1) < self.p:
            _img = F.hflip(img)
            _target = target.copy()
            # Changing the relative bbox coordinates
            if target.shape[1:] == (4,):
                _target[:, ::2] = 1 - target[:, [2, 0]]
            else:
                _target[..., 0] = 1 - target[..., 0]
            return _img, _target
        return img, target


class RandomShadow(torch.nn.Module):
    """Adds random shade to the input image

    >>> import torch
    >>> from doctr.transforms import RandomShadow
    >>> transfo = RandomShadow((0., 1.))
    >>> out = transfo(torch.rand((3, 64, 64)))

    Args:
    ----
        opacity_range : minimum and maximum opacity of the shade
    """

    def __init__(self, opacity_range: Optional[Tuple[float, float]] = None) -> None:
        super().__init__()
        self.opacity_range = opacity_range if isinstance(opacity_range, tuple) else (0.2, 0.8)

    def __call__(self, x: torch.Tensor) -> torch.Tensor:
        # Reshape the distribution
        try:
            if x.dtype == torch.uint8:
                return (
                    (
                        255
                        * random_shadow(
                            x.to(dtype=torch.float32) / 255,
                            self.opacity_range,
                        )
                    )
                    .round()
                    .clip(0, 255)
                    .to(dtype=torch.uint8)
                )
            else:
                return random_shadow(x, self.opacity_range).clip(0, 1)
        except ValueError:
            return x

    def extra_repr(self) -> str:
        return f"opacity_range={self.opacity_range}"


class RandomResize(torch.nn.Module):
    """Randomly resize the input image and align corresponding targets

    >>> import torch
    >>> from doctr.transforms import RandomResize
    >>> transfo = RandomResize((0.3, 0.9), preserve_aspect_ratio=True, symmetric_pad=True, p=0.5)
    >>> out = transfo(torch.rand((3, 64, 64)))

    Args:
    ----
        scale_range: range of the resizing factor for width and height (independently)
        preserve_aspect_ratio: whether to preserve the aspect ratio of the image,
            given a float value, the aspect ratio will be preserved with this probability
        symmetric_pad: whether to symmetrically pad the image,
            given a float value, the symmetric padding will be applied with this probability
        p: probability to apply the transformation
    """

    def __init__(
        self,
        scale_range: Tuple[float, float] = (0.3, 0.9),
        preserve_aspect_ratio: Union[bool, float] = False,
        symmetric_pad: Union[bool, float] = False,
        p: float = 0.5,
    ) -> None:
        super().__init__()
        self.scale_range = scale_range
        self.preserve_aspect_ratio = preserve_aspect_ratio
        self.symmetric_pad = symmetric_pad
        self.p = p
        self._resize = Resize

    def forward(self, img: torch.Tensor, target: np.ndarray) -> Tuple[torch.Tensor, np.ndarray]:
        if torch.rand(1) < self.p:
            scale_h = np.random.uniform(*self.scale_range)
            scale_w = np.random.uniform(*self.scale_range)
            new_size = (int(img.shape[-2] * scale_h), int(img.shape[-1] * scale_w))

            _img, _target = self._resize(
                new_size,
                preserve_aspect_ratio=self.preserve_aspect_ratio
                if isinstance(self.preserve_aspect_ratio, bool)
                else bool(torch.rand(1) <= self.symmetric_pad),
                symmetric_pad=self.symmetric_pad
                if isinstance(self.symmetric_pad, bool)
                else bool(torch.rand(1) <= self.symmetric_pad),
            )(img, target)

            return _img, _target
        return img, target

    def extra_repr(self) -> str:
        return f"scale_range={self.scale_range}, preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}, p={self.p}"  # noqa: E501