Spaces:
Runtime error
Runtime error
File size: 10,937 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
import math
from typing import Optional, Tuple, Union
import numpy as np
import torch
from PIL.Image import Image
from torch.nn.functional import pad
from torchvision.transforms import functional as F
from torchvision.transforms import transforms as T
from ..functional.pytorch import random_shadow
__all__ = ["Resize", "GaussianNoise", "ChannelShuffle", "RandomHorizontalFlip", "RandomShadow", "RandomResize"]
class Resize(T.Resize):
"""Resize the input image to the given size"""
def __init__(
self,
size: Union[int, Tuple[int, int]],
interpolation=F.InterpolationMode.BILINEAR,
preserve_aspect_ratio: bool = False,
symmetric_pad: bool = False,
) -> None:
super().__init__(size, interpolation, antialias=True)
self.preserve_aspect_ratio = preserve_aspect_ratio
self.symmetric_pad = symmetric_pad
if not isinstance(self.size, (int, tuple, list)):
raise AssertionError("size should be either a tuple, a list or an int")
def forward(
self,
img: torch.Tensor,
target: Optional[np.ndarray] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, np.ndarray]]:
if isinstance(self.size, int):
target_ratio = img.shape[-2] / img.shape[-1]
else:
target_ratio = self.size[0] / self.size[1]
actual_ratio = img.shape[-2] / img.shape[-1]
if not self.preserve_aspect_ratio or (target_ratio == actual_ratio and (isinstance(self.size, (tuple, list)))):
# If we don't preserve the aspect ratio or the wanted aspect ratio is the same than the original one
# We can use with the regular resize
if target is not None:
return super().forward(img), target
return super().forward(img)
else:
# Resize
if isinstance(self.size, (tuple, list)):
if actual_ratio > target_ratio:
tmp_size = (self.size[0], max(int(self.size[0] / actual_ratio), 1))
else:
tmp_size = (max(int(self.size[1] * actual_ratio), 1), self.size[1])
elif isinstance(self.size, int): # self.size is the longest side, infer the other
if img.shape[-2] <= img.shape[-1]:
tmp_size = (max(int(self.size * actual_ratio), 1), self.size)
else:
tmp_size = (self.size, max(int(self.size / actual_ratio), 1))
# Scale image
img = F.resize(img, tmp_size, self.interpolation, antialias=True)
raw_shape = img.shape[-2:]
if isinstance(self.size, (tuple, list)):
# Pad (inverted in pytorch)
_pad = (0, self.size[1] - img.shape[-1], 0, self.size[0] - img.shape[-2])
if self.symmetric_pad:
half_pad = (math.ceil(_pad[1] / 2), math.ceil(_pad[3] / 2))
_pad = (half_pad[0], _pad[1] - half_pad[0], half_pad[1], _pad[3] - half_pad[1])
img = pad(img, _pad)
# In case boxes are provided, resize boxes if needed (for detection task if preserve aspect ratio)
if target is not None:
if self.preserve_aspect_ratio:
# Get absolute coords
if target.shape[1:] == (4,):
if isinstance(self.size, (tuple, list)) and self.symmetric_pad:
if np.max(target) <= 1:
offset = half_pad[0] / img.shape[-1], half_pad[1] / img.shape[-2]
target[:, [0, 2]] = offset[0] + target[:, [0, 2]] * raw_shape[-1] / img.shape[-1]
target[:, [1, 3]] = offset[1] + target[:, [1, 3]] * raw_shape[-2] / img.shape[-2]
else:
target[:, [0, 2]] *= raw_shape[-1] / img.shape[-1]
target[:, [1, 3]] *= raw_shape[-2] / img.shape[-2]
elif target.shape[1:] == (4, 2):
if isinstance(self.size, (tuple, list)) and self.symmetric_pad:
if np.max(target) <= 1:
offset = half_pad[0] / img.shape[-1], half_pad[1] / img.shape[-2]
target[..., 0] = offset[0] + target[..., 0] * raw_shape[-1] / img.shape[-1]
target[..., 1] = offset[1] + target[..., 1] * raw_shape[-2] / img.shape[-2]
else:
target[..., 0] *= raw_shape[-1] / img.shape[-1]
target[..., 1] *= raw_shape[-2] / img.shape[-2]
else:
raise AssertionError
return img, target
return img
def __repr__(self) -> str:
interpolate_str = self.interpolation.value
_repr = f"output_size={self.size}, interpolation='{interpolate_str}'"
if self.preserve_aspect_ratio:
_repr += f", preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}"
return f"{self.__class__.__name__}({_repr})"
class GaussianNoise(torch.nn.Module):
"""Adds Gaussian Noise to the input tensor
>>> import torch
>>> from doctr.transforms import GaussianNoise
>>> transfo = GaussianNoise(0., 1.)
>>> out = transfo(torch.rand((3, 224, 224)))
Args:
----
mean : mean of the gaussian distribution
std : std of the gaussian distribution
"""
def __init__(self, mean: float = 0.0, std: float = 1.0) -> None:
super().__init__()
self.std = std
self.mean = mean
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Reshape the distribution
noise = self.mean + 2 * self.std * torch.rand(x.shape, device=x.device) - self.std
if x.dtype == torch.uint8:
return (x + 255 * noise).round().clamp(0, 255).to(dtype=torch.uint8)
else:
return (x + noise.to(dtype=x.dtype)).clamp(0, 1)
def extra_repr(self) -> str:
return f"mean={self.mean}, std={self.std}"
class ChannelShuffle(torch.nn.Module):
"""Randomly shuffle channel order of a given image"""
def __init__(self):
super().__init__()
def forward(self, img: torch.Tensor) -> torch.Tensor:
# Get a random order
chan_order = torch.rand(img.shape[0]).argsort()
return img[chan_order]
class RandomHorizontalFlip(T.RandomHorizontalFlip):
"""Randomly flip the input image horizontally"""
def forward(
self, img: Union[torch.Tensor, Image], target: np.ndarray
) -> Tuple[Union[torch.Tensor, Image], np.ndarray]:
if torch.rand(1) < self.p:
_img = F.hflip(img)
_target = target.copy()
# Changing the relative bbox coordinates
if target.shape[1:] == (4,):
_target[:, ::2] = 1 - target[:, [2, 0]]
else:
_target[..., 0] = 1 - target[..., 0]
return _img, _target
return img, target
class RandomShadow(torch.nn.Module):
"""Adds random shade to the input image
>>> import torch
>>> from doctr.transforms import RandomShadow
>>> transfo = RandomShadow((0., 1.))
>>> out = transfo(torch.rand((3, 64, 64)))
Args:
----
opacity_range : minimum and maximum opacity of the shade
"""
def __init__(self, opacity_range: Optional[Tuple[float, float]] = None) -> None:
super().__init__()
self.opacity_range = opacity_range if isinstance(opacity_range, tuple) else (0.2, 0.8)
def __call__(self, x: torch.Tensor) -> torch.Tensor:
# Reshape the distribution
try:
if x.dtype == torch.uint8:
return (
(
255
* random_shadow(
x.to(dtype=torch.float32) / 255,
self.opacity_range,
)
)
.round()
.clip(0, 255)
.to(dtype=torch.uint8)
)
else:
return random_shadow(x, self.opacity_range).clip(0, 1)
except ValueError:
return x
def extra_repr(self) -> str:
return f"opacity_range={self.opacity_range}"
class RandomResize(torch.nn.Module):
"""Randomly resize the input image and align corresponding targets
>>> import torch
>>> from doctr.transforms import RandomResize
>>> transfo = RandomResize((0.3, 0.9), preserve_aspect_ratio=True, symmetric_pad=True, p=0.5)
>>> out = transfo(torch.rand((3, 64, 64)))
Args:
----
scale_range: range of the resizing factor for width and height (independently)
preserve_aspect_ratio: whether to preserve the aspect ratio of the image,
given a float value, the aspect ratio will be preserved with this probability
symmetric_pad: whether to symmetrically pad the image,
given a float value, the symmetric padding will be applied with this probability
p: probability to apply the transformation
"""
def __init__(
self,
scale_range: Tuple[float, float] = (0.3, 0.9),
preserve_aspect_ratio: Union[bool, float] = False,
symmetric_pad: Union[bool, float] = False,
p: float = 0.5,
) -> None:
super().__init__()
self.scale_range = scale_range
self.preserve_aspect_ratio = preserve_aspect_ratio
self.symmetric_pad = symmetric_pad
self.p = p
self._resize = Resize
def forward(self, img: torch.Tensor, target: np.ndarray) -> Tuple[torch.Tensor, np.ndarray]:
if torch.rand(1) < self.p:
scale_h = np.random.uniform(*self.scale_range)
scale_w = np.random.uniform(*self.scale_range)
new_size = (int(img.shape[-2] * scale_h), int(img.shape[-1] * scale_w))
_img, _target = self._resize(
new_size,
preserve_aspect_ratio=self.preserve_aspect_ratio
if isinstance(self.preserve_aspect_ratio, bool)
else bool(torch.rand(1) <= self.symmetric_pad),
symmetric_pad=self.symmetric_pad
if isinstance(self.symmetric_pad, bool)
else bool(torch.rand(1) <= self.symmetric_pad),
)(img, target)
return _img, _target
return img, target
def extra_repr(self) -> str:
return f"scale_range={self.scale_range}, preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}, p={self.p}" # noqa: E501
|