File size: 20,348 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

import random
from typing import Any, Callable, Iterable, List, Optional, Tuple, Union

import numpy as np
import tensorflow as tf

from doctr.utils.repr import NestedObject

from ..functional.tensorflow import _gaussian_filter, random_shadow

__all__ = [
    "Compose",
    "Resize",
    "Normalize",
    "LambdaTransformation",
    "ToGray",
    "RandomBrightness",
    "RandomContrast",
    "RandomSaturation",
    "RandomHue",
    "RandomGamma",
    "RandomJpegQuality",
    "GaussianBlur",
    "ChannelShuffle",
    "GaussianNoise",
    "RandomHorizontalFlip",
    "RandomShadow",
    "RandomResize",
]


class Compose(NestedObject):
    """Implements a wrapper that will apply transformations sequentially

    >>> import tensorflow as tf
    >>> from doctr.transforms import Compose, Resize
    >>> transfos = Compose([Resize((32, 32))])
    >>> out = transfos(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        transforms: list of transformation modules
    """

    _children_names: List[str] = ["transforms"]

    def __init__(self, transforms: List[Callable[[Any], Any]]) -> None:
        self.transforms = transforms

    def __call__(self, x: Any) -> Any:
        for t in self.transforms:
            x = t(x)

        return x


class Resize(NestedObject):
    """Resizes a tensor to a target size

    >>> import tensorflow as tf
    >>> from doctr.transforms import Resize
    >>> transfo = Resize((32, 32))
    >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        output_size: expected output size
        method: interpolation method
        preserve_aspect_ratio: if `True`, preserve aspect ratio and pad the rest with zeros
        symmetric_pad: if `True` while preserving aspect ratio, the padding will be done symmetrically
    """

    def __init__(
        self,
        output_size: Union[int, Tuple[int, int]],
        method: str = "bilinear",
        preserve_aspect_ratio: bool = False,
        symmetric_pad: bool = False,
    ) -> None:
        self.output_size = output_size
        self.method = method
        self.preserve_aspect_ratio = preserve_aspect_ratio
        self.symmetric_pad = symmetric_pad
        self.antialias = True

        if isinstance(self.output_size, int):
            self.wanted_size = (self.output_size, self.output_size)
        elif isinstance(self.output_size, (tuple, list)):
            self.wanted_size = self.output_size
        else:
            raise AssertionError("Output size should be either a list, a tuple or an int")

    def extra_repr(self) -> str:
        _repr = f"output_size={self.output_size}, method='{self.method}'"
        if self.preserve_aspect_ratio:
            _repr += f", preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}"
        return _repr

    def __call__(
        self,
        img: tf.Tensor,
        target: Optional[np.ndarray] = None,
    ) -> Union[tf.Tensor, Tuple[tf.Tensor, np.ndarray]]:
        input_dtype = img.dtype

        img = tf.image.resize(img, self.wanted_size, self.method, self.preserve_aspect_ratio, self.antialias)
        # It will produce an un-padded resized image, with a side shorter than wanted if we preserve aspect ratio
        raw_shape = img.shape[:2]
        if self.preserve_aspect_ratio:
            if isinstance(self.output_size, (tuple, list)):
                # In that case we need to pad because we want to enforce both width and height
                if not self.symmetric_pad:
                    offset = (0, 0)
                elif self.output_size[0] == img.shape[0]:
                    offset = (0, int((self.output_size[1] - img.shape[1]) / 2))
                else:
                    offset = (int((self.output_size[0] - img.shape[0]) / 2), 0)
                img = tf.image.pad_to_bounding_box(img, *offset, *self.output_size)

        # In case boxes are provided, resize boxes if needed (for detection task if preserve aspect ratio)
        if target is not None:
            if self.preserve_aspect_ratio:
                # Get absolute coords
                if target.shape[1:] == (4,):
                    if isinstance(self.output_size, (tuple, list)) and self.symmetric_pad:
                        if np.max(target) <= 1:
                            offset = offset[0] / img.shape[0], offset[1] / img.shape[1]
                        target[:, [0, 2]] = offset[1] + target[:, [0, 2]] * raw_shape[1] / img.shape[1]
                        target[:, [1, 3]] = offset[0] + target[:, [1, 3]] * raw_shape[0] / img.shape[0]
                    else:
                        target[:, [0, 2]] *= raw_shape[1] / img.shape[1]
                        target[:, [1, 3]] *= raw_shape[0] / img.shape[0]
                elif target.shape[1:] == (4, 2):
                    if isinstance(self.output_size, (tuple, list)) and self.symmetric_pad:
                        if np.max(target) <= 1:
                            offset = offset[0] / img.shape[0], offset[1] / img.shape[1]
                        target[..., 0] = offset[1] + target[..., 0] * raw_shape[1] / img.shape[1]
                        target[..., 1] = offset[0] + target[..., 1] * raw_shape[0] / img.shape[0]
                    else:
                        target[..., 0] *= raw_shape[1] / img.shape[1]
                        target[..., 1] *= raw_shape[0] / img.shape[0]
                else:
                    raise AssertionError
            return tf.cast(img, dtype=input_dtype), target

        return tf.cast(img, dtype=input_dtype)


class Normalize(NestedObject):
    """Normalize a tensor to a Gaussian distribution for each channel

    >>> import tensorflow as tf
    >>> from doctr.transforms import Normalize
    >>> transfo = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        mean: average value per channel
        std: standard deviation per channel
    """

    def __init__(self, mean: Tuple[float, float, float], std: Tuple[float, float, float]) -> None:
        self.mean = tf.constant(mean)
        self.std = tf.constant(std)

    def extra_repr(self) -> str:
        return f"mean={self.mean.numpy().tolist()}, std={self.std.numpy().tolist()}"

    def __call__(self, img: tf.Tensor) -> tf.Tensor:
        img -= tf.cast(self.mean, dtype=img.dtype)
        img /= tf.cast(self.std, dtype=img.dtype)
        return img


class LambdaTransformation(NestedObject):
    """Normalize a tensor to a Gaussian distribution for each channel

    >>> import tensorflow as tf
    >>> from doctr.transforms import LambdaTransformation
    >>> transfo = LambdaTransformation(lambda x: x/ 255.)
    >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        fn: the function to be applied to the input tensor
    """

    def __init__(self, fn: Callable[[tf.Tensor], tf.Tensor]) -> None:
        self.fn = fn

    def __call__(self, img: tf.Tensor) -> tf.Tensor:
        return self.fn(img)


class ToGray(NestedObject):
    """Convert a RGB tensor (batch of images or image) to a 3-channels grayscale tensor

    >>> import tensorflow as tf
    >>> from doctr.transforms import ToGray
    >>> transfo = ToGray()
    >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))
    """

    def __init__(self, num_output_channels: int = 1):
        self.num_output_channels = num_output_channels

    def __call__(self, img: tf.Tensor) -> tf.Tensor:
        img = tf.image.rgb_to_grayscale(img)
        return img if self.num_output_channels == 1 else tf.repeat(img, self.num_output_channels, axis=-1)


class RandomBrightness(NestedObject):
    """Randomly adjust brightness of a tensor (batch of images or image) by adding a delta
    to all pixels

    >>> import tensorflow as tf
    >>> from doctr.transforms import RandomBrightness
    >>> transfo = RandomBrightness()
    >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        max_delta: offset to add to each pixel is randomly picked in [-max_delta, max_delta]
        p: probability to apply transformation
    """

    def __init__(self, max_delta: float = 0.3) -> None:
        self.max_delta = max_delta

    def extra_repr(self) -> str:
        return f"max_delta={self.max_delta}"

    def __call__(self, img: tf.Tensor) -> tf.Tensor:
        return tf.image.random_brightness(img, max_delta=self.max_delta)


class RandomContrast(NestedObject):
    """Randomly adjust contrast of a tensor (batch of images or image) by adjusting
    each pixel: (img - mean) * contrast_factor + mean.

    >>> import tensorflow as tf
    >>> from doctr.transforms import RandomContrast
    >>> transfo = RandomContrast()
    >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        delta: multiplicative factor is picked in [1-delta, 1+delta] (reduce contrast if factor<1)
    """

    def __init__(self, delta: float = 0.3) -> None:
        self.delta = delta

    def extra_repr(self) -> str:
        return f"delta={self.delta}"

    def __call__(self, img: tf.Tensor) -> tf.Tensor:
        return tf.image.random_contrast(img, lower=1 - self.delta, upper=1 / (1 - self.delta))


class RandomSaturation(NestedObject):
    """Randomly adjust saturation of a tensor (batch of images or image) by converting to HSV and
    increasing saturation by a factor.

    >>> import tensorflow as tf
    >>> from doctr.transforms import RandomSaturation
    >>> transfo = RandomSaturation()
    >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        delta: multiplicative factor is picked in [1-delta, 1+delta] (reduce saturation if factor<1)
    """

    def __init__(self, delta: float = 0.5) -> None:
        self.delta = delta

    def extra_repr(self) -> str:
        return f"delta={self.delta}"

    def __call__(self, img: tf.Tensor) -> tf.Tensor:
        return tf.image.random_saturation(img, lower=1 - self.delta, upper=1 + self.delta)


class RandomHue(NestedObject):
    """Randomly adjust hue of a tensor (batch of images or image) by converting to HSV and adding a delta

    >>> import tensorflow as tf
    >>> from doctr.transforms import RandomHue
    >>> transfo = RandomHue()
    >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        max_delta: offset to add to each pixel is randomly picked in [-max_delta, max_delta]
    """

    def __init__(self, max_delta: float = 0.3) -> None:
        self.max_delta = max_delta

    def extra_repr(self) -> str:
        return f"max_delta={self.max_delta}"

    def __call__(self, img: tf.Tensor) -> tf.Tensor:
        return tf.image.random_hue(img, max_delta=self.max_delta)


class RandomGamma(NestedObject):
    """randomly performs gamma correction for a tensor (batch of images or image)

    >>> import tensorflow as tf
    >>> from doctr.transforms import RandomGamma
    >>> transfo = RandomGamma()
    >>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        min_gamma: non-negative real number, lower bound for gamma param
        max_gamma: non-negative real number, upper bound for gamma
        min_gain: lower bound for constant multiplier
        max_gain: upper bound for constant multiplier
    """

    def __init__(
        self,
        min_gamma: float = 0.5,
        max_gamma: float = 1.5,
        min_gain: float = 0.8,
        max_gain: float = 1.2,
    ) -> None:
        self.min_gamma = min_gamma
        self.max_gamma = max_gamma
        self.min_gain = min_gain
        self.max_gain = max_gain

    def extra_repr(self) -> str:
        return f"""gamma_range=({self.min_gamma}, {self.max_gamma}),
                 gain_range=({self.min_gain}, {self.max_gain})"""

    def __call__(self, img: tf.Tensor) -> tf.Tensor:
        gamma = random.uniform(self.min_gamma, self.max_gamma)
        gain = random.uniform(self.min_gain, self.max_gain)
        return tf.image.adjust_gamma(img, gamma=gamma, gain=gain)


class RandomJpegQuality(NestedObject):
    """Randomly adjust jpeg quality of a 3 dimensional RGB image

    >>> import tensorflow as tf
    >>> from doctr.transforms import RandomJpegQuality
    >>> transfo = RandomJpegQuality()
    >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        min_quality: int between [0, 100]
        max_quality: int between [0, 100]
    """

    def __init__(self, min_quality: int = 60, max_quality: int = 100) -> None:
        self.min_quality = min_quality
        self.max_quality = max_quality

    def extra_repr(self) -> str:
        return f"min_quality={self.min_quality}"

    def __call__(self, img: tf.Tensor) -> tf.Tensor:
        return tf.image.random_jpeg_quality(img, min_jpeg_quality=self.min_quality, max_jpeg_quality=self.max_quality)


class GaussianBlur(NestedObject):
    """Randomly adjust jpeg quality of a 3 dimensional RGB image

    >>> import tensorflow as tf
    >>> from doctr.transforms import GaussianBlur
    >>> transfo = GaussianBlur(3, (.1, 5))
    >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        kernel_shape: size of the blurring kernel
        std: min and max value of the standard deviation
    """

    def __init__(self, kernel_shape: Union[int, Iterable[int]], std: Tuple[float, float]) -> None:
        self.kernel_shape = kernel_shape
        self.std = std

    def extra_repr(self) -> str:
        return f"kernel_shape={self.kernel_shape}, std={self.std}"

    @tf.function
    def __call__(self, img: tf.Tensor) -> tf.Tensor:
        return tf.squeeze(
            _gaussian_filter(
                img[tf.newaxis, ...],
                kernel_size=self.kernel_shape,
                sigma=random.uniform(self.std[0], self.std[1]),
                mode="REFLECT",
            ),
            axis=0,
        )


class ChannelShuffle(NestedObject):
    """Randomly shuffle channel order of a given image"""

    def __init__(self):
        pass

    def __call__(self, img: tf.Tensor) -> tf.Tensor:
        return tf.transpose(tf.random.shuffle(tf.transpose(img, perm=[2, 0, 1])), perm=[1, 2, 0])


class GaussianNoise(NestedObject):
    """Adds Gaussian Noise to the input tensor

    >>> import tensorflow as tf
    >>> from doctr.transforms import GaussianNoise
    >>> transfo = GaussianNoise(0., 1.)
    >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        mean : mean of the gaussian distribution
        std : std of the gaussian distribution
    """

    def __init__(self, mean: float = 0.0, std: float = 1.0) -> None:
        super().__init__()
        self.std = std
        self.mean = mean

    def __call__(self, x: tf.Tensor) -> tf.Tensor:
        # Reshape the distribution
        noise = self.mean + 2 * self.std * tf.random.uniform(x.shape) - self.std
        if x.dtype == tf.uint8:
            return tf.cast(
                tf.clip_by_value(tf.math.round(tf.cast(x, dtype=tf.float32) + 255 * noise), 0, 255), dtype=tf.uint8
            )
        else:
            return tf.cast(tf.clip_by_value(x + noise, 0, 1), dtype=x.dtype)

    def extra_repr(self) -> str:
        return f"mean={self.mean}, std={self.std}"


class RandomHorizontalFlip(NestedObject):
    """Adds random horizontal flip to the input tensor/np.ndarray

    >>> import tensorflow as tf
    >>> from doctr.transforms import RandomHorizontalFlip
    >>> transfo = RandomHorizontalFlip(p=0.5)
    >>> image = tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)
    >>> target = np.array([[0.1, 0.1, 0.4, 0.5] ], dtype= np.float32)
    >>> out = transfo(image, target)

    Args:
    ----
        p : probability of Horizontal Flip
    """

    def __init__(self, p: float) -> None:
        super().__init__()
        self.p = p

    def __call__(self, img: Union[tf.Tensor, np.ndarray], target: np.ndarray) -> Tuple[tf.Tensor, np.ndarray]:
        if np.random.rand(1) <= self.p:
            _img = tf.image.flip_left_right(img)
            _target = target.copy()
            # Changing the relative bbox coordinates
            if target.shape[1:] == (4,):
                _target[:, ::2] = 1 - target[:, [2, 0]]
            else:
                _target[..., 0] = 1 - target[..., 0]
            return _img, _target
        return img, target


class RandomShadow(NestedObject):
    """Adds random shade to the input image

    >>> import tensorflow as tf
    >>> from doctr.transforms import RandomShadow
    >>> transfo = RandomShadow(0., 1.)
    >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        opacity_range : minimum and maximum opacity of the shade
    """

    def __init__(self, opacity_range: Optional[Tuple[float, float]] = None) -> None:
        super().__init__()
        self.opacity_range = opacity_range if isinstance(opacity_range, tuple) else (0.2, 0.8)

    def __call__(self, x: tf.Tensor) -> tf.Tensor:
        # Reshape the distribution
        if x.dtype == tf.uint8:
            return tf.cast(
                tf.clip_by_value(
                    tf.math.round(255 * random_shadow(tf.cast(x, dtype=tf.float32) / 255, self.opacity_range)),
                    0,
                    255,
                ),
                dtype=tf.uint8,
            )
        else:
            return tf.clip_by_value(random_shadow(x, self.opacity_range), 0, 1)

    def extra_repr(self) -> str:
        return f"opacity_range={self.opacity_range}"


class RandomResize(NestedObject):
    """Randomly resize the input image and align corresponding targets

    >>> import tensorflow as tf
    >>> from doctr.transforms import RandomResize
    >>> transfo = RandomResize((0.3, 0.9), preserve_aspect_ratio=True, symmetric_pad=True, p=0.5)
    >>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))

    Args:
    ----
        scale_range: range of the resizing factor for width and height (independently)
        preserve_aspect_ratio: whether to preserve the aspect ratio of the image,
            given a float value, the aspect ratio will be preserved with this probability
        symmetric_pad: whether to symmetrically pad the image,
            given a float value, the symmetric padding will be applied with this probability
        p: probability to apply the transformation
    """

    def __init__(
        self,
        scale_range: Tuple[float, float] = (0.3, 0.9),
        preserve_aspect_ratio: Union[bool, float] = False,
        symmetric_pad: Union[bool, float] = False,
        p: float = 0.5,
    ):
        super().__init__()
        self.scale_range = scale_range
        self.preserve_aspect_ratio = preserve_aspect_ratio
        self.symmetric_pad = symmetric_pad
        self.p = p
        self._resize = Resize

    def __call__(self, img: tf.Tensor, target: np.ndarray) -> Tuple[tf.Tensor, np.ndarray]:
        if np.random.rand(1) <= self.p:
            scale_h = random.uniform(*self.scale_range)
            scale_w = random.uniform(*self.scale_range)
            new_size = (int(img.shape[-3] * scale_h), int(img.shape[-2] * scale_w))

            _img, _target = self._resize(
                new_size,
                preserve_aspect_ratio=self.preserve_aspect_ratio
                if isinstance(self.preserve_aspect_ratio, bool)
                else bool(np.random.rand(1) <= self.symmetric_pad),
                symmetric_pad=self.symmetric_pad
                if isinstance(self.symmetric_pad, bool)
                else bool(np.random.rand(1) <= self.symmetric_pad),
            )(img, target)

            return _img, _target
        return img, target

    def extra_repr(self) -> str:
        return f"scale_range={self.scale_range}, preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}, p={self.p}"  # noqa: E501