Spaces:
Runtime error
Runtime error
File size: 15,685 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from copy import deepcopy
from math import ceil
from typing import List, Optional, Tuple, Union
import cv2
import numpy as np
from .common_types import BoundingBox, Polygon4P
__all__ = [
"bbox_to_polygon",
"polygon_to_bbox",
"resolve_enclosing_bbox",
"resolve_enclosing_rbbox",
"rotate_boxes",
"compute_expanded_shape",
"rotate_image",
"estimate_page_angle",
"convert_to_relative_coords",
"rotate_abs_geoms",
"extract_crops",
"extract_rcrops",
]
def bbox_to_polygon(bbox: BoundingBox) -> Polygon4P:
"""Convert a bounding box to a polygon
Args:
----
bbox: a bounding box
Returns:
-------
a polygon
"""
return bbox[0], (bbox[1][0], bbox[0][1]), (bbox[0][0], bbox[1][1]), bbox[1]
def polygon_to_bbox(polygon: Polygon4P) -> BoundingBox:
"""Convert a polygon to a bounding box
Args:
----
polygon: a polygon
Returns:
-------
a bounding box
"""
x, y = zip(*polygon)
return (min(x), min(y)), (max(x), max(y))
def resolve_enclosing_bbox(bboxes: Union[List[BoundingBox], np.ndarray]) -> Union[BoundingBox, np.ndarray]:
"""Compute enclosing bbox either from:
Args:
----
bboxes: boxes in one of the following formats:
- an array of boxes: (*, 5), where boxes have this shape:
(xmin, ymin, xmax, ymax, score)
- a list of BoundingBox
Returns:
-------
a (1, 5) array (enclosing boxarray), or a BoundingBox
"""
if isinstance(bboxes, np.ndarray):
xmin, ymin, xmax, ymax, score = np.split(bboxes, 5, axis=1)
return np.array([xmin.min(), ymin.min(), xmax.max(), ymax.max(), score.mean()])
else:
x, y = zip(*[point for box in bboxes for point in box])
return (min(x), min(y)), (max(x), max(y))
def resolve_enclosing_rbbox(rbboxes: List[np.ndarray], intermed_size: int = 1024) -> np.ndarray:
"""Compute enclosing rotated bbox either from:
Args:
----
rbboxes: boxes in one of the following formats:
- an array of boxes: (*, 5), where boxes have this shape:
(xmin, ymin, xmax, ymax, score)
- a list of BoundingBox
intermed_size: size of the intermediate image
Returns:
-------
a (1, 5) array (enclosing boxarray), or a BoundingBox
"""
cloud: np.ndarray = np.concatenate(rbboxes, axis=0)
# Convert to absolute for minAreaRect
cloud *= intermed_size
rect = cv2.minAreaRect(cloud.astype(np.int32))
return cv2.boxPoints(rect) / intermed_size # type: ignore[operator]
def rotate_abs_points(points: np.ndarray, angle: float = 0.0) -> np.ndarray:
"""Rotate points counter-clockwise.
Args:
----
points: array of size (N, 2)
angle: angle between -90 and +90 degrees
Returns:
-------
Rotated points
"""
angle_rad = angle * np.pi / 180.0 # compute radian angle for np functions
rotation_mat = np.array(
[[np.cos(angle_rad), -np.sin(angle_rad)], [np.sin(angle_rad), np.cos(angle_rad)]], dtype=points.dtype
)
return np.matmul(points, rotation_mat.T)
def compute_expanded_shape(img_shape: Tuple[int, int], angle: float) -> Tuple[int, int]:
"""Compute the shape of an expanded rotated image
Args:
----
img_shape: the height and width of the image
angle: angle between -90 and +90 degrees
Returns:
-------
the height and width of the rotated image
"""
points: np.ndarray = np.array([
[img_shape[1] / 2, img_shape[0] / 2],
[-img_shape[1] / 2, img_shape[0] / 2],
])
rotated_points = rotate_abs_points(points, angle)
wh_shape = 2 * np.abs(rotated_points).max(axis=0)
return wh_shape[1], wh_shape[0]
def rotate_abs_geoms(
geoms: np.ndarray,
angle: float,
img_shape: Tuple[int, int],
expand: bool = True,
) -> np.ndarray:
"""Rotate a batch of bounding boxes or polygons by an angle around the
image center.
Args:
----
geoms: (N, 4) or (N, 4, 2) array of ABSOLUTE coordinate boxes
angle: anti-clockwise rotation angle in degrees
img_shape: the height and width of the image
expand: whether the image should be padded to avoid information loss
Returns:
-------
A batch of rotated polygons (N, 4, 2)
"""
# Switch to polygons
polys = (
np.stack([geoms[:, [0, 1]], geoms[:, [2, 1]], geoms[:, [2, 3]], geoms[:, [0, 3]]], axis=1)
if geoms.ndim == 2
else geoms
)
polys = polys.astype(np.float32)
# Switch to image center as referential
polys[..., 0] -= img_shape[1] / 2
polys[..., 1] = img_shape[0] / 2 - polys[..., 1]
# Rotated them around image center
rotated_polys = rotate_abs_points(polys.reshape(-1, 2), angle).reshape(-1, 4, 2)
# Switch back to top-left corner as referential
target_shape = compute_expanded_shape(img_shape, angle) if expand else img_shape
# Clip coords to fit since there is no expansion
rotated_polys[..., 0] = (rotated_polys[..., 0] + target_shape[1] / 2).clip(0, target_shape[1])
rotated_polys[..., 1] = (target_shape[0] / 2 - rotated_polys[..., 1]).clip(0, target_shape[0])
return rotated_polys
def remap_boxes(loc_preds: np.ndarray, orig_shape: Tuple[int, int], dest_shape: Tuple[int, int]) -> np.ndarray:
"""Remaps a batch of rotated locpred (N, 4, 2) expressed for an origin_shape to a destination_shape.
This does not impact the absolute shape of the boxes, but allow to calculate the new relative RotatedBbox
coordinates after a resizing of the image.
Args:
----
loc_preds: (N, 4, 2) array of RELATIVE loc_preds
orig_shape: shape of the origin image
dest_shape: shape of the destination image
Returns:
-------
A batch of rotated loc_preds (N, 4, 2) expressed in the destination referencial
"""
if len(dest_shape) != 2:
raise ValueError(f"Mask length should be 2, was found at: {len(dest_shape)}")
if len(orig_shape) != 2:
raise ValueError(f"Image_shape length should be 2, was found at: {len(orig_shape)}")
orig_height, orig_width = orig_shape
dest_height, dest_width = dest_shape
mboxes = loc_preds.copy()
mboxes[:, :, 0] = ((loc_preds[:, :, 0] * orig_width) + (dest_width - orig_width) / 2) / dest_width
mboxes[:, :, 1] = ((loc_preds[:, :, 1] * orig_height) + (dest_height - orig_height) / 2) / dest_height
return mboxes
def rotate_boxes(
loc_preds: np.ndarray,
angle: float,
orig_shape: Tuple[int, int],
min_angle: float = 1.0,
target_shape: Optional[Tuple[int, int]] = None,
) -> np.ndarray:
"""Rotate a batch of straight bounding boxes (xmin, ymin, xmax, ymax, c) or rotated bounding boxes
(4, 2) of an angle, if angle > min_angle, around the center of the page.
If target_shape is specified, the boxes are remapped to the target shape after the rotation. This
is done to remove the padding that is created by rotate_page(expand=True)
Args:
----
loc_preds: (N, 5) or (N, 4, 2) array of RELATIVE boxes
angle: angle between -90 and +90 degrees
orig_shape: shape of the origin image
min_angle: minimum angle to rotate boxes
target_shape: shape of the destination image
Returns:
-------
A batch of rotated boxes (N, 4, 2): or a batch of straight bounding boxes
"""
# Change format of the boxes to rotated boxes
_boxes = loc_preds.copy()
if _boxes.ndim == 2:
_boxes = np.stack(
[
_boxes[:, [0, 1]],
_boxes[:, [2, 1]],
_boxes[:, [2, 3]],
_boxes[:, [0, 3]],
],
axis=1,
)
# If small angle, return boxes (no rotation)
if abs(angle) < min_angle or abs(angle) > 90 - min_angle:
return _boxes
# Compute rotation matrix
angle_rad = angle * np.pi / 180.0 # compute radian angle for np functions
rotation_mat = np.array(
[[np.cos(angle_rad), -np.sin(angle_rad)], [np.sin(angle_rad), np.cos(angle_rad)]], dtype=_boxes.dtype
)
# Rotate absolute points
points: np.ndarray = np.stack((_boxes[:, :, 0] * orig_shape[1], _boxes[:, :, 1] * orig_shape[0]), axis=-1)
image_center = (orig_shape[1] / 2, orig_shape[0] / 2)
rotated_points = image_center + np.matmul(points - image_center, rotation_mat)
rotated_boxes: np.ndarray = np.stack(
(rotated_points[:, :, 0] / orig_shape[1], rotated_points[:, :, 1] / orig_shape[0]), axis=-1
)
# Apply a mask if requested
if target_shape is not None:
rotated_boxes = remap_boxes(rotated_boxes, orig_shape=orig_shape, dest_shape=target_shape)
return rotated_boxes
def rotate_image(
image: np.ndarray,
angle: float,
expand: bool = False,
preserve_origin_shape: bool = False,
) -> np.ndarray:
"""Rotate an image counterclockwise by an given angle.
Args:
----
image: numpy tensor to rotate
angle: rotation angle in degrees, between -90 and +90
expand: whether the image should be padded before the rotation
preserve_origin_shape: if expand is set to True, resizes the final output to the original image size
Returns:
-------
Rotated array, padded by 0 by default.
"""
# Compute the expanded padding
exp_img: np.ndarray
if expand:
exp_shape = compute_expanded_shape(image.shape[:2], angle) # type: ignore[arg-type]
h_pad, w_pad = (
int(max(0, ceil(exp_shape[0] - image.shape[0]))),
int(max(0, ceil(exp_shape[1] - image.shape[1]))),
)
exp_img = np.pad(image, ((h_pad // 2, h_pad - h_pad // 2), (w_pad // 2, w_pad - w_pad // 2), (0, 0)))
else:
exp_img = image
height, width = exp_img.shape[:2]
rot_mat = cv2.getRotationMatrix2D((width / 2, height / 2), angle, 1.0)
rot_img = cv2.warpAffine(exp_img, rot_mat, (width, height))
if expand:
# Pad to get the same aspect ratio
if (image.shape[0] / image.shape[1]) != (rot_img.shape[0] / rot_img.shape[1]):
# Pad width
if (rot_img.shape[0] / rot_img.shape[1]) > (image.shape[0] / image.shape[1]):
h_pad, w_pad = 0, int(rot_img.shape[0] * image.shape[1] / image.shape[0] - rot_img.shape[1])
# Pad height
else:
h_pad, w_pad = int(rot_img.shape[1] * image.shape[0] / image.shape[1] - rot_img.shape[0]), 0
rot_img = np.pad(rot_img, ((h_pad // 2, h_pad - h_pad // 2), (w_pad // 2, w_pad - w_pad // 2), (0, 0)))
if preserve_origin_shape:
# rescale
rot_img = cv2.resize(rot_img, image.shape[:-1][::-1], interpolation=cv2.INTER_LINEAR)
return rot_img
def estimate_page_angle(polys: np.ndarray) -> float:
"""Takes a batch of rotated previously ORIENTED polys (N, 4, 2) (rectified by the classifier) and return the
estimated angle ccw in degrees
"""
# Compute mean left points and mean right point with respect to the reading direction (oriented polygon)
xleft = polys[:, 0, 0] + polys[:, 3, 0]
yleft = polys[:, 0, 1] + polys[:, 3, 1]
xright = polys[:, 1, 0] + polys[:, 2, 0]
yright = polys[:, 1, 1] + polys[:, 2, 1]
with np.errstate(divide="raise", invalid="raise"):
try:
return float(
np.median(np.arctan((yleft - yright) / (xright - xleft)) * 180 / np.pi) # Y axis from top to bottom!
)
except FloatingPointError:
return 0.0
def convert_to_relative_coords(geoms: np.ndarray, img_shape: Tuple[int, int]) -> np.ndarray:
"""Convert a geometry to relative coordinates
Args:
----
geoms: a set of polygons of shape (N, 4, 2) or of straight boxes of shape (N, 4)
img_shape: the height and width of the image
Returns:
-------
the updated geometry
"""
# Polygon
if geoms.ndim == 3 and geoms.shape[1:] == (4, 2):
polygons: np.ndarray = np.empty(geoms.shape, dtype=np.float32)
polygons[..., 0] = geoms[..., 0] / img_shape[1]
polygons[..., 1] = geoms[..., 1] / img_shape[0]
return polygons.clip(0, 1)
if geoms.ndim == 2 and geoms.shape[1] == 4:
boxes: np.ndarray = np.empty(geoms.shape, dtype=np.float32)
boxes[:, ::2] = geoms[:, ::2] / img_shape[1]
boxes[:, 1::2] = geoms[:, 1::2] / img_shape[0]
return boxes.clip(0, 1)
raise ValueError(f"invalid format for arg `geoms`: {geoms.shape}")
def extract_crops(img: np.ndarray, boxes: np.ndarray, channels_last: bool = True) -> List[np.ndarray]:
"""Created cropped images from list of bounding boxes
Args:
----
img: input image
boxes: bounding boxes of shape (N, 4) where N is the number of boxes, and the relative
coordinates (xmin, ymin, xmax, ymax)
channels_last: whether the channel dimensions is the last one instead of the last one
Returns:
-------
list of cropped images
"""
if boxes.shape[0] == 0:
return []
if boxes.shape[1] != 4:
raise AssertionError("boxes are expected to be relative and in order (xmin, ymin, xmax, ymax)")
# Project relative coordinates
_boxes = boxes.copy()
h, w = img.shape[:2] if channels_last else img.shape[-2:]
if not np.issubdtype(_boxes.dtype, np.integer):
_boxes[:, [0, 2]] *= w
_boxes[:, [1, 3]] *= h
_boxes = _boxes.round().astype(int)
# Add last index
_boxes[2:] += 1
if channels_last:
return deepcopy([img[box[1] : box[3], box[0] : box[2]] for box in _boxes])
return deepcopy([img[:, box[1] : box[3], box[0] : box[2]] for box in _boxes])
def extract_rcrops(
img: np.ndarray, polys: np.ndarray, dtype=np.float32, channels_last: bool = True
) -> List[np.ndarray]:
"""Created cropped images from list of rotated bounding boxes
Args:
----
img: input image
polys: bounding boxes of shape (N, 4, 2)
dtype: target data type of bounding boxes
channels_last: whether the channel dimensions is the last one instead of the last one
Returns:
-------
list of cropped images
"""
if polys.shape[0] == 0:
return []
if polys.shape[1:] != (4, 2):
raise AssertionError("polys are expected to be quadrilateral, of shape (N, 4, 2)")
# Project relative coordinates
_boxes = polys.copy()
height, width = img.shape[:2] if channels_last else img.shape[-2:]
if not np.issubdtype(_boxes.dtype, np.integer):
_boxes[:, :, 0] *= width
_boxes[:, :, 1] *= height
src_pts = _boxes[:, :3].astype(np.float32)
# Preserve size
d1 = np.linalg.norm(src_pts[:, 0] - src_pts[:, 1], axis=-1)
d2 = np.linalg.norm(src_pts[:, 1] - src_pts[:, 2], axis=-1)
# (N, 3, 2)
dst_pts = np.zeros((_boxes.shape[0], 3, 2), dtype=dtype)
dst_pts[:, 1, 0] = dst_pts[:, 2, 0] = d1 - 1
dst_pts[:, 2, 1] = d2 - 1
# Use a warp transformation to extract the crop
crops = [
cv2.warpAffine(
img if channels_last else img.transpose(1, 2, 0),
# Transformation matrix
cv2.getAffineTransform(src_pts[idx], dst_pts[idx]),
(int(d1[idx]), int(d2[idx])),
)
for idx in range(_boxes.shape[0])
]
return crops
|