File size: 20,552 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

from typing import Dict, List, Optional, Tuple

import numpy as np
from anyascii import anyascii
from scipy.optimize import linear_sum_assignment
from shapely.geometry import Polygon

__all__ = [
    "TextMatch",
    "box_iou",
    "polygon_iou",
    "nms",
    "LocalizationConfusion",
    "OCRMetric",
    "DetectionMetric",
]


def string_match(word1: str, word2: str) -> Tuple[bool, bool, bool, bool]:
    """Performs string comparison with multiple levels of tolerance

    Args:
    ----
        word1: a string
        word2: another string

    Returns:
    -------
        a tuple with booleans specifying respectively whether the raw strings, their lower-case counterparts, their
            anyascii counterparts and their lower-case anyascii counterparts match
    """
    raw_match = word1 == word2
    caseless_match = word1.lower() == word2.lower()
    anyascii_match = anyascii(word1) == anyascii(word2)

    # Warning: the order is important here otherwise the pair ("EUR", "€") cannot be matched
    unicase_match = anyascii(word1).lower() == anyascii(word2).lower()

    return raw_match, caseless_match, anyascii_match, unicase_match


class TextMatch:
    r"""Implements text match metric (word-level accuracy) for recognition task.

    The raw aggregated metric is computed as follows:

    .. math::
        \forall X, Y \in \mathcal{W}^N,
        TextMatch(X, Y) = \frac{1}{N} \sum\limits_{i=1}^N f_{Y_i}(X_i)

    with the indicator function :math:`f_{a}` defined as:

    .. math::
        \forall a, x \in \mathcal{W},
        f_a(x) = \left\{
            \begin{array}{ll}
                1 & \mbox{if } x = a \\
                0 & \mbox{otherwise.}
            \end{array}
        \right.

    where :math:`\mathcal{W}` is the set of all possible character sequences,
    :math:`N` is a strictly positive integer.

    >>> from doctr.utils import TextMatch
    >>> metric = TextMatch()
    >>> metric.update(['Hello', 'world'], ['hello', 'world'])
    >>> metric.summary()
    """

    def __init__(self) -> None:
        self.reset()

    def update(
        self,
        gt: List[str],
        pred: List[str],
    ) -> None:
        """Update the state of the metric with new predictions

        Args:
        ----
            gt: list of groung-truth character sequences
            pred: list of predicted character sequences
        """
        if len(gt) != len(pred):
            raise AssertionError("prediction size does not match with ground-truth labels size")

        for gt_word, pred_word in zip(gt, pred):
            _raw, _caseless, _anyascii, _unicase = string_match(gt_word, pred_word)
            self.raw += int(_raw)
            self.caseless += int(_caseless)
            self.anyascii += int(_anyascii)
            self.unicase += int(_unicase)

        self.total += len(gt)

    def summary(self) -> Dict[str, float]:
        """Computes the aggregated metrics

        Returns
        -------
            a dictionary with the exact match score for the raw data, its lower-case counterpart, its anyascii
            counterpart and its lower-case anyascii counterpart
        """
        if self.total == 0:
            raise AssertionError("you need to update the metric before getting the summary")

        return dict(
            raw=self.raw / self.total,
            caseless=self.caseless / self.total,
            anyascii=self.anyascii / self.total,
            unicase=self.unicase / self.total,
        )

    def reset(self) -> None:
        self.raw = 0
        self.caseless = 0
        self.anyascii = 0
        self.unicase = 0
        self.total = 0


def box_iou(boxes_1: np.ndarray, boxes_2: np.ndarray) -> np.ndarray:
    """Computes the IoU between two sets of bounding boxes

    Args:
    ----
        boxes_1: bounding boxes of shape (N, 4) in format (xmin, ymin, xmax, ymax)
        boxes_2: bounding boxes of shape (M, 4) in format (xmin, ymin, xmax, ymax)

    Returns:
    -------
        the IoU matrix of shape (N, M)
    """
    iou_mat: np.ndarray = np.zeros((boxes_1.shape[0], boxes_2.shape[0]), dtype=np.float32)

    if boxes_1.shape[0] > 0 and boxes_2.shape[0] > 0:
        l1, t1, r1, b1 = np.split(boxes_1, 4, axis=1)
        l2, t2, r2, b2 = np.split(boxes_2, 4, axis=1)

        left = np.maximum(l1, l2.T)
        top = np.maximum(t1, t2.T)
        right = np.minimum(r1, r2.T)
        bot = np.minimum(b1, b2.T)

        intersection = np.clip(right - left, 0, np.Inf) * np.clip(bot - top, 0, np.Inf)
        union = (r1 - l1) * (b1 - t1) + ((r2 - l2) * (b2 - t2)).T - intersection
        iou_mat = intersection / union

    return iou_mat


def polygon_iou(polys_1: np.ndarray, polys_2: np.ndarray) -> np.ndarray:
    """Computes the IoU between two sets of rotated bounding boxes

    Args:
    ----
        polys_1: rotated bounding boxes of shape (N, 4, 2)
        polys_2: rotated bounding boxes of shape (M, 4, 2)
        mask_shape: spatial shape of the intermediate masks
        use_broadcasting: if set to True, leverage broadcasting speedup by consuming more memory

    Returns:
    -------
        the IoU matrix of shape (N, M)
    """
    if polys_1.ndim != 3 or polys_2.ndim != 3:
        raise AssertionError("expects boxes to be in format (N, 4, 2)")

    iou_mat = np.zeros((polys_1.shape[0], polys_2.shape[0]), dtype=np.float32)

    shapely_polys_1 = [Polygon(poly) for poly in polys_1]
    shapely_polys_2 = [Polygon(poly) for poly in polys_2]

    for i, poly1 in enumerate(shapely_polys_1):
        for j, poly2 in enumerate(shapely_polys_2):
            intersection_area = poly1.intersection(poly2).area
            union_area = poly1.area + poly2.area - intersection_area
            iou_mat[i, j] = intersection_area / union_area

    return iou_mat


def nms(boxes: np.ndarray, thresh: float = 0.5) -> List[int]:
    """Perform non-max suppression, borrowed from <https://github.com/rbgirshick/fast-rcnn>`_.

    Args:
    ----
        boxes: np array of straight boxes: (*, 5), (xmin, ymin, xmax, ymax, score)
        thresh: iou threshold to perform box suppression.

    Returns:
    -------
        A list of box indexes to keep
    """
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    scores = boxes[:, 4]

    areas = (x2 - x1) * (y2 - y1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1)
        h = np.maximum(0.0, yy2 - yy1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        inds = np.where(ovr <= thresh)[0]
        order = order[inds + 1]
    return keep


class LocalizationConfusion:
    r"""Implements common confusion metrics and mean IoU for localization evaluation.

    The aggregated metrics are computed as follows:

    .. math::
        \forall Y \in \mathcal{B}^N, \forall X \in \mathcal{B}^M, \\
        Recall(X, Y) = \frac{1}{N} \sum\limits_{i=1}^N g_{X}(Y_i) \\
        Precision(X, Y) = \frac{1}{M} \sum\limits_{i=1}^M g_{X}(Y_i) \\
        meanIoU(X, Y) = \frac{1}{M} \sum\limits_{i=1}^M \max\limits_{j \in [1, N]}  IoU(X_i, Y_j)

    with the function :math:`IoU(x, y)` being the Intersection over Union between bounding boxes :math:`x` and
    :math:`y`, and the function :math:`g_{X}` defined as:

    .. math::
        \forall y \in \mathcal{B},
        g_X(y) = \left\{
            \begin{array}{ll}
                1 & \mbox{if } y\mbox{ has been assigned to any }(X_i)_i\mbox{ with an }IoU \geq 0.5 \\
                0 & \mbox{otherwise.}
            \end{array}
        \right.

    where :math:`\mathcal{B}` is the set of possible bounding boxes,
    :math:`N` (number of ground truths) and :math:`M` (number of predictions) are strictly positive integers.

    >>> import numpy as np
    >>> from doctr.utils import LocalizationConfusion
    >>> metric = LocalizationConfusion(iou_thresh=0.5)
    >>> metric.update(np.asarray([[0, 0, 100, 100]]), np.asarray([[0, 0, 70, 70], [110, 95, 200, 150]]))
    >>> metric.summary()

    Args:
    ----
        iou_thresh: minimum IoU to consider a pair of prediction and ground truth as a match
        use_polygons: if set to True, predictions and targets will be expected to have rotated format
    """

    def __init__(
        self,
        iou_thresh: float = 0.5,
        use_polygons: bool = False,
    ) -> None:
        self.iou_thresh = iou_thresh
        self.use_polygons = use_polygons
        self.reset()

    def update(self, gts: np.ndarray, preds: np.ndarray) -> None:
        """Updates the metric

        Args:
        ----
            gts: a set of relative bounding boxes either of shape (N, 4) or (N, 5) if they are rotated ones
            preds: a set of relative bounding boxes either of shape (M, 4) or (M, 5) if they are rotated ones
        """
        if preds.shape[0] > 0:
            # Compute IoU
            if self.use_polygons:
                iou_mat = polygon_iou(gts, preds)
            else:
                iou_mat = box_iou(gts, preds)
            self.tot_iou += float(iou_mat.max(axis=0).sum())

            # Assign pairs
            gt_indices, pred_indices = linear_sum_assignment(-iou_mat)
            self.matches += int((iou_mat[gt_indices, pred_indices] >= self.iou_thresh).sum())

        # Update counts
        self.num_gts += gts.shape[0]
        self.num_preds += preds.shape[0]

    def summary(self) -> Tuple[Optional[float], Optional[float], Optional[float]]:
        """Computes the aggregated metrics

        Returns
        -------
            a tuple with the recall, precision and meanIoU scores
        """
        # Recall
        recall = self.matches / self.num_gts if self.num_gts > 0 else None

        # Precision
        precision = self.matches / self.num_preds if self.num_preds > 0 else None

        # mean IoU
        mean_iou = round(self.tot_iou / self.num_preds, 2) if self.num_preds > 0 else None

        return recall, precision, mean_iou

    def reset(self) -> None:
        self.num_gts = 0
        self.num_preds = 0
        self.matches = 0
        self.tot_iou = 0.0


class OCRMetric:
    r"""Implements an end-to-end OCR metric.

    The aggregated metrics are computed as follows:

    .. math::
        \forall (B, L) \in \mathcal{B}^N \times \mathcal{L}^N,
        \forall (\hat{B}, \hat{L}) \in \mathcal{B}^M \times \mathcal{L}^M, \\
        Recall(B, \hat{B}, L, \hat{L}) = \frac{1}{N} \sum\limits_{i=1}^N h_{B,L}(\hat{B}_i, \hat{L}_i) \\
        Precision(B, \hat{B}, L, \hat{L}) = \frac{1}{M} \sum\limits_{i=1}^M h_{B,L}(\hat{B}_i, \hat{L}_i) \\
        meanIoU(B, \hat{B}) = \frac{1}{M} \sum\limits_{i=1}^M \max\limits_{j \in [1, N]}  IoU(\hat{B}_i, B_j)

    with the function :math:`IoU(x, y)` being the Intersection over Union between bounding boxes :math:`x` and
    :math:`y`, and the function :math:`h_{B, L}` defined as:

    .. math::
        \forall (b, l) \in \mathcal{B} \times \mathcal{L},
        h_{B,L}(b, l) = \left\{
            \begin{array}{ll}
                1 & \mbox{if } b\mbox{ has been assigned to a given }B_j\mbox{ with an } \\
                & IoU \geq 0.5 \mbox{ and that for this assignment, } l = L_j\\
                0 & \mbox{otherwise.}
            \end{array}
        \right.

    where :math:`\mathcal{B}` is the set of possible bounding boxes,
    :math:`\mathcal{L}` is the set of possible character sequences,
    :math:`N` (number of ground truths) and :math:`M` (number of predictions) are strictly positive integers.

    >>> import numpy as np
    >>> from doctr.utils import OCRMetric
    >>> metric = OCRMetric(iou_thresh=0.5)
    >>> metric.update(np.asarray([[0, 0, 100, 100]]), np.asarray([[0, 0, 70, 70], [110, 95, 200, 150]]),
    >>>               ['hello'], ['hello', 'world'])
    >>> metric.summary()

    Args:
    ----
        iou_thresh: minimum IoU to consider a pair of prediction and ground truth as a match
        use_polygons: if set to True, predictions and targets will be expected to have rotated format
    """

    def __init__(
        self,
        iou_thresh: float = 0.5,
        use_polygons: bool = False,
    ) -> None:
        self.iou_thresh = iou_thresh
        self.use_polygons = use_polygons
        self.reset()

    def update(
        self,
        gt_boxes: np.ndarray,
        pred_boxes: np.ndarray,
        gt_labels: List[str],
        pred_labels: List[str],
    ) -> None:
        """Updates the metric

        Args:
        ----
            gt_boxes: a set of relative bounding boxes either of shape (N, 4) or (N, 5) if they are rotated ones
            pred_boxes: a set of relative bounding boxes either of shape (M, 4) or (M, 5) if they are rotated ones
            gt_labels: a list of N string labels
            pred_labels: a list of M string labels
        """
        if gt_boxes.shape[0] != len(gt_labels) or pred_boxes.shape[0] != len(pred_labels):
            raise AssertionError(
                "there should be the same number of boxes and string both for the ground truth " "and the predictions"
            )

        # Compute IoU
        if pred_boxes.shape[0] > 0:
            if self.use_polygons:
                iou_mat = polygon_iou(gt_boxes, pred_boxes)
            else:
                iou_mat = box_iou(gt_boxes, pred_boxes)

            self.tot_iou += float(iou_mat.max(axis=0).sum())

            # Assign pairs
            gt_indices, pred_indices = linear_sum_assignment(-iou_mat)
            is_kept = iou_mat[gt_indices, pred_indices] >= self.iou_thresh
            # String comparison
            for gt_idx, pred_idx in zip(gt_indices[is_kept], pred_indices[is_kept]):
                _raw, _caseless, _anyascii, _unicase = string_match(gt_labels[gt_idx], pred_labels[pred_idx])
                self.raw_matches += int(_raw)
                self.caseless_matches += int(_caseless)
                self.anyascii_matches += int(_anyascii)
                self.unicase_matches += int(_unicase)

        self.num_gts += gt_boxes.shape[0]
        self.num_preds += pred_boxes.shape[0]

    def summary(self) -> Tuple[Dict[str, Optional[float]], Dict[str, Optional[float]], Optional[float]]:
        """Computes the aggregated metrics

        Returns
        -------
            a tuple with the recall & precision for each string comparison and the mean IoU
        """
        # Recall
        recall = dict(
            raw=self.raw_matches / self.num_gts if self.num_gts > 0 else None,
            caseless=self.caseless_matches / self.num_gts if self.num_gts > 0 else None,
            anyascii=self.anyascii_matches / self.num_gts if self.num_gts > 0 else None,
            unicase=self.unicase_matches / self.num_gts if self.num_gts > 0 else None,
        )

        # Precision
        precision = dict(
            raw=self.raw_matches / self.num_preds if self.num_preds > 0 else None,
            caseless=self.caseless_matches / self.num_preds if self.num_preds > 0 else None,
            anyascii=self.anyascii_matches / self.num_preds if self.num_preds > 0 else None,
            unicase=self.unicase_matches / self.num_preds if self.num_preds > 0 else None,
        )

        # mean IoU (overall detected boxes)
        mean_iou = round(self.tot_iou / self.num_preds, 2) if self.num_preds > 0 else None

        return recall, precision, mean_iou

    def reset(self) -> None:
        self.num_gts = 0
        self.num_preds = 0
        self.tot_iou = 0.0
        self.raw_matches = 0
        self.caseless_matches = 0
        self.anyascii_matches = 0
        self.unicase_matches = 0


class DetectionMetric:
    r"""Implements an object detection metric.

    The aggregated metrics are computed as follows:

    .. math::
        \forall (B, C) \in \mathcal{B}^N \times \mathcal{C}^N,
        \forall (\hat{B}, \hat{C}) \in \mathcal{B}^M \times \mathcal{C}^M, \\
        Recall(B, \hat{B}, C, \hat{C}) = \frac{1}{N} \sum\limits_{i=1}^N h_{B,C}(\hat{B}_i, \hat{C}_i) \\
        Precision(B, \hat{B}, C, \hat{C}) = \frac{1}{M} \sum\limits_{i=1}^M h_{B,C}(\hat{B}_i, \hat{C}_i) \\
        meanIoU(B, \hat{B}) = \frac{1}{M} \sum\limits_{i=1}^M \max\limits_{j \in [1, N]}  IoU(\hat{B}_i, B_j)

    with the function :math:`IoU(x, y)` being the Intersection over Union between bounding boxes :math:`x` and
    :math:`y`, and the function :math:`h_{B, C}` defined as:

    .. math::
        \forall (b, c) \in \mathcal{B} \times \mathcal{C},
        h_{B,C}(b, c) = \left\{
            \begin{array}{ll}
                1 & \mbox{if } b\mbox{ has been assigned to a given }B_j\mbox{ with an } \\
                & IoU \geq 0.5 \mbox{ and that for this assignment, } c = C_j\\
                0 & \mbox{otherwise.}
            \end{array}
        \right.

    where :math:`\mathcal{B}` is the set of possible bounding boxes,
    :math:`\mathcal{C}` is the set of possible class indices,
    :math:`N` (number of ground truths) and :math:`M` (number of predictions) are strictly positive integers.

    >>> import numpy as np
    >>> from doctr.utils import DetectionMetric
    >>> metric = DetectionMetric(iou_thresh=0.5)
    >>> metric.update(np.asarray([[0, 0, 100, 100]]), np.asarray([[0, 0, 70, 70], [110, 95, 200, 150]]),
    >>>               np.zeros(1, dtype=np.int64), np.array([0, 1], dtype=np.int64))
    >>> metric.summary()

    Args:
    ----
        iou_thresh: minimum IoU to consider a pair of prediction and ground truth as a match
        use_polygons: if set to True, predictions and targets will be expected to have rotated format
    """

    def __init__(
        self,
        iou_thresh: float = 0.5,
        use_polygons: bool = False,
    ) -> None:
        self.iou_thresh = iou_thresh
        self.use_polygons = use_polygons
        self.reset()

    def update(
        self,
        gt_boxes: np.ndarray,
        pred_boxes: np.ndarray,
        gt_labels: np.ndarray,
        pred_labels: np.ndarray,
    ) -> None:
        """Updates the metric

        Args:
        ----
            gt_boxes: a set of relative bounding boxes either of shape (N, 4) or (N, 5) if they are rotated ones
            pred_boxes: a set of relative bounding boxes either of shape (M, 4) or (M, 5) if they are rotated ones
            gt_labels: an array of class indices of shape (N,)
            pred_labels: an array of class indices of shape (M,)
        """
        if gt_boxes.shape[0] != gt_labels.shape[0] or pred_boxes.shape[0] != pred_labels.shape[0]:
            raise AssertionError(
                "there should be the same number of boxes and string both for the ground truth " "and the predictions"
            )

        # Compute IoU
        if pred_boxes.shape[0] > 0:
            if self.use_polygons:
                iou_mat = polygon_iou(gt_boxes, pred_boxes)
            else:
                iou_mat = box_iou(gt_boxes, pred_boxes)

            self.tot_iou += float(iou_mat.max(axis=0).sum())

            # Assign pairs
            gt_indices, pred_indices = linear_sum_assignment(-iou_mat)
            is_kept = iou_mat[gt_indices, pred_indices] >= self.iou_thresh
            # Category comparison
            self.num_matches += int((gt_labels[gt_indices[is_kept]] == pred_labels[pred_indices[is_kept]]).sum())

        self.num_gts += gt_boxes.shape[0]
        self.num_preds += pred_boxes.shape[0]

    def summary(self) -> Tuple[Optional[float], Optional[float], Optional[float]]:
        """Computes the aggregated metrics

        Returns
        -------
            a tuple with the recall & precision for each class prediction and the mean IoU
        """
        # Recall
        recall = self.num_matches / self.num_gts if self.num_gts > 0 else None

        # Precision
        precision = self.num_matches / self.num_preds if self.num_preds > 0 else None

        # mean IoU (overall detected boxes)
        mean_iou = round(self.tot_iou / self.num_preds, 2) if self.num_preds > 0 else None

        return recall, precision, mean_iou

    def reset(self) -> None:
        self.num_gts = 0
        self.num_preds = 0
        self.tot_iou = 0.0
        self.num_matches = 0