File size: 13,277 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
import colorsys
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple, Union

import cv2
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.figure import Figure

from .common_types import BoundingBox, Polygon4P

__all__ = ["visualize_page", "visualize_kie_page", "draw_boxes"]


def rect_patch(
    geometry: BoundingBox,
    page_dimensions: Tuple[int, int],
    label: Optional[str] = None,
    color: Tuple[float, float, float] = (0, 0, 0),
    alpha: float = 0.3,
    linewidth: int = 2,
    fill: bool = True,
    preserve_aspect_ratio: bool = False,
) -> patches.Rectangle:
    """Create a matplotlib rectangular patch for the element

    Args:
    ----
        geometry: bounding box of the element
        page_dimensions: dimensions of the Page in format (height, width)
        label: label to display when hovered
        color: color to draw box
        alpha: opacity parameter to fill the boxes, 0 = transparent
        linewidth: line width
        fill: whether the patch should be filled
        preserve_aspect_ratio: pass True if you passed True to the predictor

    Returns:
    -------
        a rectangular Patch
    """
    if len(geometry) != 2 or any(not isinstance(elt, tuple) or len(elt) != 2 for elt in geometry):
        raise ValueError("invalid geometry format")

    # Unpack
    height, width = page_dimensions
    (xmin, ymin), (xmax, ymax) = geometry
    # Switch to absolute coords
    if preserve_aspect_ratio:
        width = height = max(height, width)
    xmin, w = xmin * width, (xmax - xmin) * width
    ymin, h = ymin * height, (ymax - ymin) * height

    return patches.Rectangle(
        (xmin, ymin),
        w,
        h,
        fill=fill,
        linewidth=linewidth,
        edgecolor=(*color, alpha),
        facecolor=(*color, alpha),
        label=label,
    )


def polygon_patch(
    geometry: np.ndarray,
    page_dimensions: Tuple[int, int],
    label: Optional[str] = None,
    color: Tuple[float, float, float] = (0, 0, 0),
    alpha: float = 0.3,
    linewidth: int = 2,
    fill: bool = True,
    preserve_aspect_ratio: bool = False,
) -> patches.Polygon:
    """Create a matplotlib polygon patch for the element

    Args:
    ----
        geometry: bounding box of the element
        page_dimensions: dimensions of the Page in format (height, width)
        label: label to display when hovered
        color: color to draw box
        alpha: opacity parameter to fill the boxes, 0 = transparent
        linewidth: line width
        fill: whether the patch should be filled
        preserve_aspect_ratio: pass True if you passed True to the predictor

    Returns:
    -------
        a polygon Patch
    """
    if not geometry.shape == (4, 2):
        raise ValueError("invalid geometry format")

    # Unpack
    height, width = page_dimensions
    geometry[:, 0] = geometry[:, 0] * (max(width, height) if preserve_aspect_ratio else width)
    geometry[:, 1] = geometry[:, 1] * (max(width, height) if preserve_aspect_ratio else height)

    return patches.Polygon(
        geometry,
        fill=fill,
        linewidth=linewidth,
        edgecolor=(*color, alpha),
        facecolor=(*color, alpha),
        label=label,
    )


def create_obj_patch(
    geometry: Union[BoundingBox, Polygon4P, np.ndarray],
    page_dimensions: Tuple[int, int],
    **kwargs: Any,
) -> patches.Patch:
    """Create a matplotlib patch for the element

    Args:
    ----
        geometry: bounding box (straight or rotated) of the element
        page_dimensions: dimensions of the page in format (height, width)
        **kwargs: keyword arguments for the patch

    Returns:
    -------
        a matplotlib Patch
    """
    if isinstance(geometry, tuple):
        if len(geometry) == 2:  # straight word BB (2 pts)
            return rect_patch(geometry, page_dimensions, **kwargs)
        elif len(geometry) == 4:  # rotated word BB (4 pts)
            return polygon_patch(np.asarray(geometry), page_dimensions, **kwargs)
    elif isinstance(geometry, np.ndarray) and geometry.shape == (4, 2):  # rotated line
        return polygon_patch(geometry, page_dimensions, **kwargs)
    raise ValueError("invalid geometry format")


def get_colors(num_colors: int) -> List[Tuple[float, float, float]]:
    """Generate num_colors color for matplotlib

    Args:
    ----
        num_colors: number of colors to generate

    Returns:
    -------
        colors: list of generated colors
    """
    colors = []
    for i in np.arange(0.0, 360.0, 360.0 / num_colors):
        hue = i / 360.0
        lightness = (50 + np.random.rand() * 10) / 100.0
        saturation = (90 + np.random.rand() * 10) / 100.0
        colors.append(colorsys.hls_to_rgb(hue, lightness, saturation))
    return colors


def visualize_page(
    page: Dict[str, Any],
    image: np.ndarray,
    words_only: bool = True,
    display_artefacts: bool = True,
    scale: float = 10,
    interactive: bool = True,
    add_labels: bool = True,
    **kwargs: Any,
) -> Figure:
    """Visualize a full page with predicted blocks, lines and words

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from doctr.utils.visualization import visualize_page
    >>> from doctr.models import ocr_db_crnn
    >>> model = ocr_db_crnn(pretrained=True)
    >>> input_page = (255 * np.random.rand(600, 800, 3)).astype(np.uint8)
    >>> out = model([[input_page]])
    >>> visualize_page(out[0].pages[0].export(), input_page)
    >>> plt.show()

    Args:
    ----
        page: the exported Page of a Document
        image: np array of the page, needs to have the same shape than page['dimensions']
        words_only: whether only words should be displayed
        display_artefacts: whether artefacts should be displayed
        scale: figsize of the largest windows side
        interactive: whether the plot should be interactive
        add_labels: for static plot, adds text labels on top of bounding box
        **kwargs: keyword arguments for the polygon patch

    Returns:
    -------
        the matplotlib figure
    """
    # Get proper scale and aspect ratio
    h, w = image.shape[:2]
    size = (scale * w / h, scale) if h > w else (scale, h / w * scale)
    fig, ax = plt.subplots(figsize=size)
    # Display the image
    ax.imshow(image)
    # hide both axis
    ax.axis("off")

    if interactive:
        artists: List[patches.Patch] = []  # instantiate an empty list of patches (to be drawn on the page)

    for block in page["blocks"]:
        if not words_only:
            rect = create_obj_patch(
                block["geometry"], page["dimensions"], label="block", color=(0, 1, 0), linewidth=1, **kwargs
            )
            # add patch on figure
            ax.add_patch(rect)
            if interactive:
                # add patch to cursor's artists
                artists.append(rect)

        for line in block["lines"]:
            if not words_only:
                rect = create_obj_patch(
                    line["geometry"], page["dimensions"], label="line", color=(1, 0, 0), linewidth=1, **kwargs
                )
                ax.add_patch(rect)
                if interactive:
                    artists.append(rect)

            for word in line["words"]:
                rect = create_obj_patch(
                    word["geometry"],
                    page["dimensions"],
                    label=f"{word['value']} (confidence: {word['confidence']:.2%})",
                    color=(0, 0, 1),
                    **kwargs,
                )
                ax.add_patch(rect)
                if interactive:
                    artists.append(rect)
                elif add_labels:
                    if len(word["geometry"]) == 5:
                        text_loc = (
                            int(page["dimensions"][1] * (word["geometry"][0] - word["geometry"][2] / 2)),
                            int(page["dimensions"][0] * (word["geometry"][1] - word["geometry"][3] / 2)),
                        )
                    else:
                        text_loc = (
                            int(page["dimensions"][1] * word["geometry"][0][0]),
                            int(page["dimensions"][0] * word["geometry"][0][1]),
                        )

                    if len(word["geometry"]) == 2:
                        # We draw only if boxes are in straight format
                        ax.text(
                            *text_loc,
                            word["value"],
                            size=10,
                            alpha=0.5,
                            color=(0, 0, 1),
                        )

        if display_artefacts:
            for artefact in block["artefacts"]:
                rect = create_obj_patch(
                    artefact["geometry"],
                    page["dimensions"],
                    label="artefact",
                    color=(0.5, 0.5, 0.5),
                    linewidth=1,
                    **kwargs,
                )
                ax.add_patch(rect)
                if interactive:
                    artists.append(rect)

    if interactive:
        import mplcursors

        # Create mlp Cursor to hover patches in artists
        mplcursors.Cursor(artists, hover=2).connect("add", lambda sel: sel.annotation.set_text(sel.artist.get_label()))
    fig.tight_layout(pad=0.0)

    return fig


def visualize_kie_page(
    page: Dict[str, Any],
    image: np.ndarray,
    words_only: bool = False,
    display_artefacts: bool = True,
    scale: float = 10,
    interactive: bool = True,
    add_labels: bool = True,
    **kwargs: Any,
) -> Figure:
    """Visualize a full page with predicted blocks, lines and words

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from doctr.utils.visualization import visualize_page
    >>> from doctr.models import ocr_db_crnn
    >>> model = ocr_db_crnn(pretrained=True)
    >>> input_page = (255 * np.random.rand(600, 800, 3)).astype(np.uint8)
    >>> out = model([[input_page]])
    >>> visualize_kie_page(out[0].pages[0].export(), input_page)
    >>> plt.show()

    Args:
    ----
        page: the exported Page of a Document
        image: np array of the page, needs to have the same shape than page['dimensions']
        words_only: whether only words should be displayed
        display_artefacts: whether artefacts should be displayed
        scale: figsize of the largest windows side
        interactive: whether the plot should be interactive
        add_labels: for static plot, adds text labels on top of bounding box
        **kwargs: keyword arguments for the polygon patch

    Returns:
    -------
        the matplotlib figure
    """
    # Get proper scale and aspect ratio
    h, w = image.shape[:2]
    size = (scale * w / h, scale) if h > w else (scale, h / w * scale)
    fig, ax = plt.subplots(figsize=size)
    # Display the image
    ax.imshow(image)
    # hide both axis
    ax.axis("off")

    if interactive:
        artists: List[patches.Patch] = []  # instantiate an empty list of patches (to be drawn on the page)

    colors = {k: color for color, k in zip(get_colors(len(page["predictions"])), page["predictions"])}
    for key, value in page["predictions"].items():
        for prediction in value:
            if not words_only:
                rect = create_obj_patch(
                    prediction["geometry"],
                    page["dimensions"],
                    label=f"{key} \n {prediction['value']} (confidence: {prediction['confidence']:.2%}",
                    color=colors[key],
                    linewidth=1,
                    **kwargs,
                )
                # add patch on figure
                ax.add_patch(rect)
                if interactive:
                    # add patch to cursor's artists
                    artists.append(rect)

    if interactive:
        import mplcursors

        # Create mlp Cursor to hover patches in artists
        mplcursors.Cursor(artists, hover=2).connect("add", lambda sel: sel.annotation.set_text(sel.artist.get_label()))
    fig.tight_layout(pad=0.0)

    return fig


def draw_boxes(boxes: np.ndarray, image: np.ndarray, color: Optional[Tuple[int, int, int]] = None, **kwargs) -> None:
    """Draw an array of relative straight boxes on an image

    Args:
    ----
        boxes: array of relative boxes, of shape (*, 4)
        image: np array, float32 or uint8
        color: color to use for bounding box edges
        **kwargs: keyword arguments from `matplotlib.pyplot.plot`
    """
    h, w = image.shape[:2]
    # Convert boxes to absolute coords
    _boxes = deepcopy(boxes)
    _boxes[:, [0, 2]] *= w
    _boxes[:, [1, 3]] *= h
    _boxes = _boxes.astype(np.int32)
    for box in _boxes.tolist():
        xmin, ymin, xmax, ymax = box
        image = cv2.rectangle(
            image, (xmin, ymin), (xmax, ymax), color=color if isinstance(color, tuple) else (0, 0, 255), thickness=2
        )
    plt.imshow(image)
    plt.plot(**kwargs)