Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import math | |
from copy import deepcopy | |
from functools import partial | |
from typing import Any, Dict, List, Optional, Tuple | |
import tensorflow as tf | |
from tensorflow.keras import layers | |
from tensorflow.keras.models import Sequential | |
from doctr.datasets import VOCABS | |
from ...utils import load_pretrained_params | |
from ..resnet.tensorflow import ResNet | |
__all__ = ["magc_resnet31"] | |
default_cfgs: Dict[str, Dict[str, Any]] = { | |
"magc_resnet31": { | |
"mean": (0.694, 0.695, 0.693), | |
"std": (0.299, 0.296, 0.301), | |
"input_shape": (32, 32, 3), | |
"classes": list(VOCABS["french"]), | |
"url": "https://doctr-static.mindee.com/models?id=v0.6.0/magc_resnet31-addbb705.zip&src=0", | |
}, | |
} | |
class MAGC(layers.Layer): | |
"""Implements the Multi-Aspect Global Context Attention, as described in | |
<https://arxiv.org/pdf/1910.02562.pdf>`_. | |
Args: | |
---- | |
inplanes: input channels | |
headers: number of headers to split channels | |
attn_scale: if True, re-scale attention to counteract the variance distibutions | |
ratio: bottleneck ratio | |
**kwargs | |
""" | |
def __init__( | |
self, | |
inplanes: int, | |
headers: int = 8, | |
attn_scale: bool = False, | |
ratio: float = 0.0625, # bottleneck ratio of 1/16 as described in paper | |
**kwargs, | |
) -> None: | |
super().__init__(**kwargs) | |
self.headers = headers # h | |
self.inplanes = inplanes # C | |
self.attn_scale = attn_scale | |
self.planes = int(inplanes * ratio) | |
self.single_header_inplanes = int(inplanes / headers) # C / h | |
self.conv_mask = layers.Conv2D(filters=1, kernel_size=1, kernel_initializer=tf.initializers.he_normal()) | |
self.transform = Sequential( | |
[ | |
layers.Conv2D(filters=self.planes, kernel_size=1, kernel_initializer=tf.initializers.he_normal()), | |
layers.LayerNormalization([1, 2, 3]), | |
layers.ReLU(), | |
layers.Conv2D(filters=self.inplanes, kernel_size=1, kernel_initializer=tf.initializers.he_normal()), | |
], | |
name="transform", | |
) | |
def context_modeling(self, inputs: tf.Tensor) -> tf.Tensor: | |
b, h, w, c = (tf.shape(inputs)[i] for i in range(4)) | |
# B, H, W, C -->> B*h, H, W, C/h | |
x = tf.reshape(inputs, shape=(b, h, w, self.headers, self.single_header_inplanes)) | |
x = tf.transpose(x, perm=(0, 3, 1, 2, 4)) | |
x = tf.reshape(x, shape=(b * self.headers, h, w, self.single_header_inplanes)) | |
# Compute shorcut | |
shortcut = x | |
# B*h, 1, H*W, C/h | |
shortcut = tf.reshape(shortcut, shape=(b * self.headers, 1, h * w, self.single_header_inplanes)) | |
# B*h, 1, C/h, H*W | |
shortcut = tf.transpose(shortcut, perm=[0, 1, 3, 2]) | |
# Compute context mask | |
# B*h, H, W, 1 | |
context_mask = self.conv_mask(x) | |
# B*h, 1, H*W, 1 | |
context_mask = tf.reshape(context_mask, shape=(b * self.headers, 1, h * w, 1)) | |
# scale variance | |
if self.attn_scale and self.headers > 1: | |
context_mask = context_mask / math.sqrt(self.single_header_inplanes) | |
# B*h, 1, H*W, 1 | |
context_mask = tf.keras.activations.softmax(context_mask, axis=2) | |
# Compute context | |
# B*h, 1, C/h, 1 | |
context = tf.matmul(shortcut, context_mask) | |
context = tf.reshape(context, shape=(b, 1, c, 1)) | |
# B, 1, 1, C | |
context = tf.transpose(context, perm=(0, 1, 3, 2)) | |
# Set shape to resolve shape when calling this module in the Sequential MAGCResnet | |
batch, chan = inputs.get_shape().as_list()[0], inputs.get_shape().as_list()[-1] | |
context.set_shape([batch, 1, 1, chan]) | |
return context | |
def call(self, inputs: tf.Tensor, **kwargs) -> tf.Tensor: | |
# Context modeling: B, H, W, C -> B, 1, 1, C | |
context = self.context_modeling(inputs) | |
# Transform: B, 1, 1, C -> B, 1, 1, C | |
transformed = self.transform(context) | |
return inputs + transformed | |
def _magc_resnet( | |
arch: str, | |
pretrained: bool, | |
num_blocks: List[int], | |
output_channels: List[int], | |
stage_downsample: List[bool], | |
stage_conv: List[bool], | |
stage_pooling: List[Optional[Tuple[int, int]]], | |
origin_stem: bool = True, | |
**kwargs: Any, | |
) -> ResNet: | |
kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs[arch]["classes"])) | |
kwargs["input_shape"] = kwargs.get("input_shape", default_cfgs[arch]["input_shape"]) | |
kwargs["classes"] = kwargs.get("classes", default_cfgs[arch]["classes"]) | |
_cfg = deepcopy(default_cfgs[arch]) | |
_cfg["num_classes"] = kwargs["num_classes"] | |
_cfg["classes"] = kwargs["classes"] | |
_cfg["input_shape"] = kwargs["input_shape"] | |
kwargs.pop("classes") | |
# Build the model | |
model = ResNet( | |
num_blocks, | |
output_channels, | |
stage_downsample, | |
stage_conv, | |
stage_pooling, | |
origin_stem, | |
attn_module=partial(MAGC, headers=8, attn_scale=True), | |
cfg=_cfg, | |
**kwargs, | |
) | |
# Load pretrained parameters | |
if pretrained: | |
load_pretrained_params(model, default_cfgs[arch]["url"]) | |
return model | |
def magc_resnet31(pretrained: bool = False, **kwargs: Any) -> ResNet: | |
"""Resnet31 architecture with Multi-Aspect Global Context Attention as described in | |
`"MASTER: Multi-Aspect Non-local Network for Scene Text Recognition", | |
<https://arxiv.org/pdf/1910.02562.pdf>`_. | |
>>> import tensorflow as tf | |
>>> from doctr.models import magc_resnet31 | |
>>> model = magc_resnet31(pretrained=False) | |
>>> input_tensor = tf.random.uniform(shape=[1, 224, 224, 3], maxval=1, dtype=tf.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained: boolean, True if model is pretrained | |
**kwargs: keyword arguments of the ResNet architecture | |
Returns: | |
------- | |
A feature extractor model | |
""" | |
return _magc_resnet( | |
"magc_resnet31", | |
pretrained, | |
[1, 2, 5, 3], | |
[256, 256, 512, 512], | |
[False] * 4, | |
[True] * 4, | |
[(2, 2), (2, 1), None, None], | |
False, | |
stem_channels=128, | |
**kwargs, | |
) | |