Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
from copy import deepcopy | |
from typing import Any, Callable, Dict, List, Optional, Tuple | |
import tensorflow as tf | |
from tensorflow.keras import layers | |
from tensorflow.keras.applications import ResNet50 | |
from tensorflow.keras.models import Sequential | |
from doctr.datasets import VOCABS | |
from ...utils import conv_sequence, load_pretrained_params | |
__all__ = ["ResNet", "resnet18", "resnet31", "resnet34", "resnet50", "resnet34_wide"] | |
default_cfgs: Dict[str, Dict[str, Any]] = { | |
"resnet18": { | |
"mean": (0.694, 0.695, 0.693), | |
"std": (0.299, 0.296, 0.301), | |
"input_shape": (32, 32, 3), | |
"classes": list(VOCABS["french"]), | |
"url": "https://doctr-static.mindee.com/models?id=v0.4.1/resnet18-d4634669.zip&src=0", | |
}, | |
"resnet31": { | |
"mean": (0.694, 0.695, 0.693), | |
"std": (0.299, 0.296, 0.301), | |
"input_shape": (32, 32, 3), | |
"classes": list(VOCABS["french"]), | |
"url": "https://doctr-static.mindee.com/models?id=v0.5.0/resnet31-5a47a60b.zip&src=0", | |
}, | |
"resnet34": { | |
"mean": (0.694, 0.695, 0.693), | |
"std": (0.299, 0.296, 0.301), | |
"input_shape": (32, 32, 3), | |
"classes": list(VOCABS["french"]), | |
"url": "https://doctr-static.mindee.com/models?id=v0.5.0/resnet34-5dcc97ca.zip&src=0", | |
}, | |
"resnet50": { | |
"mean": (0.694, 0.695, 0.693), | |
"std": (0.299, 0.296, 0.301), | |
"input_shape": (32, 32, 3), | |
"classes": list(VOCABS["french"]), | |
"url": "https://doctr-static.mindee.com/models?id=v0.5.0/resnet50-e75e4cdf.zip&src=0", | |
}, | |
"resnet34_wide": { | |
"mean": (0.694, 0.695, 0.693), | |
"std": (0.299, 0.296, 0.301), | |
"input_shape": (32, 32, 3), | |
"classes": list(VOCABS["french"]), | |
"url": "https://doctr-static.mindee.com/models?id=v0.5.0/resnet34_wide-c1271816.zip&src=0", | |
}, | |
} | |
class ResnetBlock(layers.Layer): | |
"""Implements a resnet31 block with shortcut | |
Args: | |
---- | |
conv_shortcut: Use of shortcut | |
output_channels: number of channels to use in Conv2D | |
kernel_size: size of square kernels | |
strides: strides to use in the first convolution of the block | |
""" | |
def __init__(self, output_channels: int, conv_shortcut: bool, strides: int = 1, **kwargs) -> None: | |
super().__init__(**kwargs) | |
if conv_shortcut: | |
self.shortcut = Sequential([ | |
layers.Conv2D( | |
filters=output_channels, | |
strides=strides, | |
padding="same", | |
kernel_size=1, | |
use_bias=False, | |
kernel_initializer="he_normal", | |
), | |
layers.BatchNormalization(), | |
]) | |
else: | |
self.shortcut = layers.Lambda(lambda x: x) | |
self.conv_block = Sequential(self.conv_resnetblock(output_channels, 3, strides)) | |
self.act = layers.Activation("relu") | |
def conv_resnetblock( | |
output_channels: int, | |
kernel_size: int, | |
strides: int = 1, | |
) -> List[layers.Layer]: | |
return [ | |
*conv_sequence(output_channels, "relu", bn=True, strides=strides, kernel_size=kernel_size), | |
*conv_sequence(output_channels, None, bn=True, kernel_size=kernel_size), | |
] | |
def call(self, inputs: tf.Tensor) -> tf.Tensor: | |
clone = self.shortcut(inputs) | |
conv_out = self.conv_block(inputs) | |
out = self.act(clone + conv_out) | |
return out | |
def resnet_stage( | |
num_blocks: int, out_channels: int, shortcut: bool = False, downsample: bool = False | |
) -> List[layers.Layer]: | |
_layers: List[layers.Layer] = [ResnetBlock(out_channels, conv_shortcut=shortcut, strides=2 if downsample else 1)] | |
for _ in range(1, num_blocks): | |
_layers.append(ResnetBlock(out_channels, conv_shortcut=False)) | |
return _layers | |
class ResNet(Sequential): | |
"""Implements a ResNet architecture | |
Args: | |
---- | |
num_blocks: number of resnet block in each stage | |
output_channels: number of channels in each stage | |
stage_downsample: whether the first residual block of a stage should downsample | |
stage_conv: whether to add a conv_sequence after each stage | |
stage_pooling: pooling to add after each stage (if None, no pooling) | |
origin_stem: whether to use the orginal ResNet stem or ResNet-31's | |
stem_channels: number of output channels of the stem convolutions | |
attn_module: attention module to use in each stage | |
include_top: whether the classifier head should be instantiated | |
num_classes: number of output classes | |
input_shape: shape of inputs | |
""" | |
def __init__( | |
self, | |
num_blocks: List[int], | |
output_channels: List[int], | |
stage_downsample: List[bool], | |
stage_conv: List[bool], | |
stage_pooling: List[Optional[Tuple[int, int]]], | |
origin_stem: bool = True, | |
stem_channels: int = 64, | |
attn_module: Optional[Callable[[int], layers.Layer]] = None, | |
include_top: bool = True, | |
num_classes: int = 1000, | |
cfg: Optional[Dict[str, Any]] = None, | |
input_shape: Optional[Tuple[int, int, int]] = None, | |
) -> None: | |
inplanes = stem_channels | |
if origin_stem: | |
_layers = [ | |
*conv_sequence(inplanes, "relu", True, kernel_size=7, strides=2, input_shape=input_shape), | |
layers.MaxPool2D(pool_size=(3, 3), strides=2, padding="same"), | |
] | |
else: | |
_layers = [ | |
*conv_sequence(inplanes // 2, "relu", True, kernel_size=3, input_shape=input_shape), | |
*conv_sequence(inplanes, "relu", True, kernel_size=3), | |
layers.MaxPool2D(pool_size=2, strides=2, padding="valid"), | |
] | |
for n_blocks, out_chan, down, conv, pool in zip( | |
num_blocks, output_channels, stage_downsample, stage_conv, stage_pooling | |
): | |
_layers.extend(resnet_stage(n_blocks, out_chan, out_chan != inplanes, down)) | |
if attn_module is not None: | |
_layers.append(attn_module(out_chan)) | |
if conv: | |
_layers.extend(conv_sequence(out_chan, activation="relu", bn=True, kernel_size=3)) | |
if pool: | |
_layers.append(layers.MaxPool2D(pool_size=pool, strides=pool, padding="valid")) | |
inplanes = out_chan | |
if include_top: | |
_layers.extend([ | |
layers.GlobalAveragePooling2D(), | |
layers.Dense(num_classes), | |
]) | |
super().__init__(_layers) | |
self.cfg = cfg | |
def _resnet( | |
arch: str, | |
pretrained: bool, | |
num_blocks: List[int], | |
output_channels: List[int], | |
stage_downsample: List[bool], | |
stage_conv: List[bool], | |
stage_pooling: List[Optional[Tuple[int, int]]], | |
origin_stem: bool = True, | |
**kwargs: Any, | |
) -> ResNet: | |
kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs[arch]["classes"])) | |
kwargs["input_shape"] = kwargs.get("input_shape", default_cfgs[arch]["input_shape"]) | |
kwargs["classes"] = kwargs.get("classes", default_cfgs[arch]["classes"]) | |
_cfg = deepcopy(default_cfgs[arch]) | |
_cfg["num_classes"] = kwargs["num_classes"] | |
_cfg["classes"] = kwargs["classes"] | |
_cfg["input_shape"] = kwargs["input_shape"] | |
kwargs.pop("classes") | |
# Build the model | |
model = ResNet( | |
num_blocks, output_channels, stage_downsample, stage_conv, stage_pooling, origin_stem, cfg=_cfg, **kwargs | |
) | |
# Load pretrained parameters | |
if pretrained: | |
load_pretrained_params(model, default_cfgs[arch]["url"]) | |
return model | |
def resnet18(pretrained: bool = False, **kwargs: Any) -> ResNet: | |
"""Resnet-18 architecture as described in `"Deep Residual Learning for Image Recognition", | |
<https://arxiv.org/pdf/1512.03385.pdf>`_. | |
>>> import tensorflow as tf | |
>>> from doctr.models import resnet18 | |
>>> model = resnet18(pretrained=False) | |
>>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained: boolean, True if model is pretrained | |
**kwargs: keyword arguments of the ResNet architecture | |
Returns: | |
------- | |
A classification model | |
""" | |
return _resnet( | |
"resnet18", | |
pretrained, | |
[2, 2, 2, 2], | |
[64, 128, 256, 512], | |
[False, True, True, True], | |
[False] * 4, | |
[None] * 4, | |
True, | |
**kwargs, | |
) | |
def resnet31(pretrained: bool = False, **kwargs: Any) -> ResNet: | |
"""Resnet31 architecture with rectangular pooling windows as described in | |
`"Show, Attend and Read:A Simple and Strong Baseline for Irregular Text Recognition", | |
<https://arxiv.org/pdf/1811.00751.pdf>`_. Downsizing: (H, W) --> (H/8, W/4) | |
>>> import tensorflow as tf | |
>>> from doctr.models import resnet31 | |
>>> model = resnet31(pretrained=False) | |
>>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained: boolean, True if model is pretrained | |
**kwargs: keyword arguments of the ResNet architecture | |
Returns: | |
------- | |
A classification model | |
""" | |
return _resnet( | |
"resnet31", | |
pretrained, | |
[1, 2, 5, 3], | |
[256, 256, 512, 512], | |
[False] * 4, | |
[True] * 4, | |
[(2, 2), (2, 1), None, None], | |
False, | |
stem_channels=128, | |
**kwargs, | |
) | |
def resnet34(pretrained: bool = False, **kwargs: Any) -> ResNet: | |
"""Resnet-34 architecture as described in `"Deep Residual Learning for Image Recognition", | |
<https://arxiv.org/pdf/1512.03385.pdf>`_. | |
>>> import tensorflow as tf | |
>>> from doctr.models import resnet34 | |
>>> model = resnet34(pretrained=False) | |
>>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained: boolean, True if model is pretrained | |
**kwargs: keyword arguments of the ResNet architecture | |
Returns: | |
------- | |
A classification model | |
""" | |
return _resnet( | |
"resnet34", | |
pretrained, | |
[3, 4, 6, 3], | |
[64, 128, 256, 512], | |
[False, True, True, True], | |
[False] * 4, | |
[None] * 4, | |
True, | |
**kwargs, | |
) | |
def resnet50(pretrained: bool = False, **kwargs: Any) -> ResNet: | |
"""Resnet-50 architecture as described in `"Deep Residual Learning for Image Recognition", | |
<https://arxiv.org/pdf/1512.03385.pdf>`_. | |
>>> import tensorflow as tf | |
>>> from doctr.models import resnet50 | |
>>> model = resnet50(pretrained=False) | |
>>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained: boolean, True if model is pretrained | |
**kwargs: keyword arguments of the ResNet architecture | |
Returns: | |
------- | |
A classification model | |
""" | |
kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs["resnet50"]["classes"])) | |
kwargs["input_shape"] = kwargs.get("input_shape", default_cfgs["resnet50"]["input_shape"]) | |
kwargs["classes"] = kwargs.get("classes", default_cfgs["resnet50"]["classes"]) | |
_cfg = deepcopy(default_cfgs["resnet50"]) | |
_cfg["num_classes"] = kwargs["num_classes"] | |
_cfg["classes"] = kwargs["classes"] | |
_cfg["input_shape"] = kwargs["input_shape"] | |
kwargs.pop("classes") | |
model = ResNet50( | |
weights=None, | |
include_top=True, | |
pooling=True, | |
input_shape=kwargs["input_shape"], | |
classes=kwargs["num_classes"], | |
classifier_activation=None, | |
) | |
model.cfg = _cfg | |
# Load pretrained parameters | |
if pretrained: | |
load_pretrained_params(model, default_cfgs["resnet50"]["url"]) | |
return model | |
def resnet34_wide(pretrained: bool = False, **kwargs: Any) -> ResNet: | |
"""Resnet-34 architecture as described in `"Deep Residual Learning for Image Recognition", | |
<https://arxiv.org/pdf/1512.03385.pdf>`_ with twice as many output channels for each stage. | |
>>> import tensorflow as tf | |
>>> from doctr.models import resnet34_wide | |
>>> model = resnet34_wide(pretrained=False) | |
>>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained: boolean, True if model is pretrained | |
**kwargs: keyword arguments of the ResNet architecture | |
Returns: | |
------- | |
A classification model | |
""" | |
return _resnet( | |
"resnet34_wide", | |
pretrained, | |
[3, 4, 6, 3], | |
[128, 256, 512, 1024], | |
[False, True, True, True], | |
[False] * 4, | |
[None] * 4, | |
True, | |
stem_channels=128, | |
**kwargs, | |
) | |