adirathor07's picture
added doctr folder
153628e
raw
history blame
10.2 kB
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple
from torch import nn
from doctr.datasets import VOCABS
from ...modules.layers.pytorch import FASTConvLayer
from ...utils import conv_sequence_pt, load_pretrained_params
__all__ = ["textnet_tiny", "textnet_small", "textnet_base"]
default_cfgs: Dict[str, Dict[str, Any]] = {
"textnet_tiny": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (3, 32, 32),
"classes": list(VOCABS["french"]),
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_tiny-27288d12.pt&src=0",
},
"textnet_small": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (3, 32, 32),
"classes": list(VOCABS["french"]),
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_small-43166ee6.pt&src=0",
},
"textnet_base": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (3, 32, 32),
"classes": list(VOCABS["french"]),
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_base-7f68d7e0.pt&src=0",
},
}
class TextNet(nn.Sequential):
"""Implements TextNet architecture from `"FAST: Faster Arbitrarily-Shaped Text Detector with
Minimalist Kernel Representation" <https://arxiv.org/abs/2111.02394>`_.
Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_.
Args:
----
stages (List[Dict[str, List[int]]]): List of dictionaries containing the parameters of each stage.
include_top (bool, optional): Whether to include the classifier head. Defaults to True.
num_classes (int, optional): Number of output classes. Defaults to 1000.
cfg (Optional[Dict[str, Any]], optional): Additional configuration. Defaults to None.
"""
def __init__(
self,
stages: List[Dict[str, List[int]]],
input_shape: Tuple[int, int, int] = (3, 32, 32),
num_classes: int = 1000,
include_top: bool = True,
cfg: Optional[Dict[str, Any]] = None,
) -> None:
_layers: List[nn.Module] = [
*conv_sequence_pt(
in_channels=3, out_channels=64, relu=True, bn=True, kernel_size=3, stride=2, padding=(1, 1)
),
*[
nn.Sequential(*[
FASTConvLayer(**params) # type: ignore[arg-type]
for params in [{key: stage[key][i] for key in stage} for i in range(len(stage["in_channels"]))]
])
for stage in stages
],
]
if include_top:
_layers.append(
nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Flatten(1),
nn.Linear(stages[-1]["out_channels"][-1], num_classes),
)
)
super().__init__(*_layers)
self.cfg = cfg
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _textnet(
arch: str,
pretrained: bool,
ignore_keys: Optional[List[str]] = None,
**kwargs: Any,
) -> TextNet:
kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs[arch]["classes"]))
kwargs["classes"] = kwargs.get("classes", default_cfgs[arch]["classes"])
_cfg = deepcopy(default_cfgs[arch])
_cfg["num_classes"] = kwargs["num_classes"]
_cfg["classes"] = kwargs["classes"]
kwargs.pop("classes")
# Build the model
model = TextNet(**kwargs)
# Load pretrained parameters
if pretrained:
# The number of classes is not the same as the number of classes in the pretrained model =>
# remove the last layer weights
_ignore_keys = ignore_keys if kwargs["num_classes"] != len(default_cfgs[arch]["classes"]) else None
load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys)
model.cfg = _cfg
return model
def textnet_tiny(pretrained: bool = False, **kwargs: Any) -> TextNet:
"""Implements TextNet architecture from `"FAST: Faster Arbitrarily-Shaped Text Detector with
Minimalist Kernel Representation" <https://arxiv.org/abs/2111.02394>`_.
Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_.
>>> import torch
>>> from doctr.models import textnet_tiny
>>> model = textnet_tiny(pretrained=False)
>>> input_tensor = torch.rand((1, 3, 512, 512), dtype=torch.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the TextNet architecture
Returns:
-------
A textnet tiny model
"""
return _textnet(
"textnet_tiny",
pretrained,
stages=[
{"in_channels": [64] * 3, "out_channels": [64] * 3, "kernel_size": [(3, 3)] * 3, "stride": [1, 2, 1]},
{
"in_channels": [64, 128, 128, 128],
"out_channels": [128] * 4,
"kernel_size": [(3, 3), (1, 3), (3, 3), (3, 1)],
"stride": [2, 1, 1, 1],
},
{
"in_channels": [128, 256, 256, 256],
"out_channels": [256] * 4,
"kernel_size": [(3, 3), (3, 3), (3, 1), (1, 3)],
"stride": [2, 1, 1, 1],
},
{
"in_channels": [256, 512, 512, 512],
"out_channels": [512] * 4,
"kernel_size": [(3, 3), (3, 1), (1, 3), (3, 3)],
"stride": [2, 1, 1, 1],
},
],
ignore_keys=["7.2.weight", "7.2.bias"],
**kwargs,
)
def textnet_small(pretrained: bool = False, **kwargs: Any) -> TextNet:
"""Implements TextNet architecture from `"FAST: Faster Arbitrarily-Shaped Text Detector with
Minimalist Kernel Representation" <https://arxiv.org/abs/2111.02394>`_.
Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_.
>>> import torch
>>> from doctr.models import textnet_small
>>> model = textnet_small(pretrained=False)
>>> input_tensor = torch.rand((1, 3, 512, 512), dtype=torch.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the TextNet architecture
Returns:
-------
A TextNet small model
"""
return _textnet(
"textnet_small",
pretrained,
stages=[
{"in_channels": [64] * 2, "out_channels": [64] * 2, "kernel_size": [(3, 3)] * 2, "stride": [1, 2]},
{
"in_channels": [64, 128, 128, 128, 128, 128, 128, 128],
"out_channels": [128] * 8,
"kernel_size": [(3, 3), (1, 3), (3, 3), (3, 1), (3, 3), (3, 1), (1, 3), (3, 3)],
"stride": [2, 1, 1, 1, 1, 1, 1, 1],
},
{
"in_channels": [128, 256, 256, 256, 256, 256, 256, 256],
"out_channels": [256] * 8,
"kernel_size": [(3, 3), (3, 3), (1, 3), (3, 1), (3, 3), (1, 3), (3, 1), (3, 3)],
"stride": [2, 1, 1, 1, 1, 1, 1, 1],
},
{
"in_channels": [256, 512, 512, 512, 512],
"out_channels": [512] * 5,
"kernel_size": [(3, 3), (3, 1), (1, 3), (1, 3), (3, 1)],
"stride": [2, 1, 1, 1, 1],
},
],
ignore_keys=["7.2.weight", "7.2.bias"],
**kwargs,
)
def textnet_base(pretrained: bool = False, **kwargs: Any) -> TextNet:
"""Implements TextNet architecture from `"FAST: Faster Arbitrarily-Shaped Text Detector with
Minimalist Kernel Representation" <https://arxiv.org/abs/2111.02394>`_.
Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_.
>>> import torch
>>> from doctr.models import textnet_base
>>> model = textnet_base(pretrained=False)
>>> input_tensor = torch.rand((1, 3, 512, 512), dtype=torch.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the TextNet architecture
Returns:
-------
A TextNet base model
"""
return _textnet(
"textnet_base",
pretrained,
stages=[
{
"in_channels": [64] * 10,
"out_channels": [64] * 10,
"kernel_size": [(3, 3), (3, 3), (3, 1), (3, 3), (3, 1), (3, 3), (3, 3), (1, 3), (3, 3), (3, 3)],
"stride": [1, 2, 1, 1, 1, 1, 1, 1, 1, 1],
},
{
"in_channels": [64, 128, 128, 128, 128, 128, 128, 128, 128, 128],
"out_channels": [128] * 10,
"kernel_size": [(3, 3), (1, 3), (3, 3), (3, 1), (3, 3), (3, 3), (3, 1), (3, 1), (3, 3), (3, 3)],
"stride": [2, 1, 1, 1, 1, 1, 1, 1, 1, 1],
},
{
"in_channels": [128, 256, 256, 256, 256, 256, 256, 256],
"out_channels": [256] * 8,
"kernel_size": [(3, 3), (3, 3), (3, 3), (1, 3), (3, 3), (3, 1), (3, 3), (3, 1)],
"stride": [2, 1, 1, 1, 1, 1, 1, 1],
},
{
"in_channels": [256, 512, 512, 512, 512],
"out_channels": [512] * 5,
"kernel_size": [(3, 3), (1, 3), (3, 1), (3, 1), (1, 3)],
"stride": [2, 1, 1, 1, 1],
},
],
ignore_keys=["7.2.weight", "7.2.bias"],
**kwargs,
)