Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
from copy import deepcopy | |
from typing import Any, Dict, List, Optional, Tuple | |
from torch import nn | |
from doctr.datasets import VOCABS | |
from ...modules.layers.pytorch import FASTConvLayer | |
from ...utils import conv_sequence_pt, load_pretrained_params | |
__all__ = ["textnet_tiny", "textnet_small", "textnet_base"] | |
default_cfgs: Dict[str, Dict[str, Any]] = { | |
"textnet_tiny": { | |
"mean": (0.694, 0.695, 0.693), | |
"std": (0.299, 0.296, 0.301), | |
"input_shape": (3, 32, 32), | |
"classes": list(VOCABS["french"]), | |
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_tiny-27288d12.pt&src=0", | |
}, | |
"textnet_small": { | |
"mean": (0.694, 0.695, 0.693), | |
"std": (0.299, 0.296, 0.301), | |
"input_shape": (3, 32, 32), | |
"classes": list(VOCABS["french"]), | |
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_small-43166ee6.pt&src=0", | |
}, | |
"textnet_base": { | |
"mean": (0.694, 0.695, 0.693), | |
"std": (0.299, 0.296, 0.301), | |
"input_shape": (3, 32, 32), | |
"classes": list(VOCABS["french"]), | |
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_base-7f68d7e0.pt&src=0", | |
}, | |
} | |
class TextNet(nn.Sequential): | |
"""Implements TextNet architecture from `"FAST: Faster Arbitrarily-Shaped Text Detector with | |
Minimalist Kernel Representation" <https://arxiv.org/abs/2111.02394>`_. | |
Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_. | |
Args: | |
---- | |
stages (List[Dict[str, List[int]]]): List of dictionaries containing the parameters of each stage. | |
include_top (bool, optional): Whether to include the classifier head. Defaults to True. | |
num_classes (int, optional): Number of output classes. Defaults to 1000. | |
cfg (Optional[Dict[str, Any]], optional): Additional configuration. Defaults to None. | |
""" | |
def __init__( | |
self, | |
stages: List[Dict[str, List[int]]], | |
input_shape: Tuple[int, int, int] = (3, 32, 32), | |
num_classes: int = 1000, | |
include_top: bool = True, | |
cfg: Optional[Dict[str, Any]] = None, | |
) -> None: | |
_layers: List[nn.Module] = [ | |
*conv_sequence_pt( | |
in_channels=3, out_channels=64, relu=True, bn=True, kernel_size=3, stride=2, padding=(1, 1) | |
), | |
*[ | |
nn.Sequential(*[ | |
FASTConvLayer(**params) # type: ignore[arg-type] | |
for params in [{key: stage[key][i] for key in stage} for i in range(len(stage["in_channels"]))] | |
]) | |
for stage in stages | |
], | |
] | |
if include_top: | |
_layers.append( | |
nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Flatten(1), | |
nn.Linear(stages[-1]["out_channels"][-1], num_classes), | |
) | |
) | |
super().__init__(*_layers) | |
self.cfg = cfg | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
def _textnet( | |
arch: str, | |
pretrained: bool, | |
ignore_keys: Optional[List[str]] = None, | |
**kwargs: Any, | |
) -> TextNet: | |
kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs[arch]["classes"])) | |
kwargs["classes"] = kwargs.get("classes", default_cfgs[arch]["classes"]) | |
_cfg = deepcopy(default_cfgs[arch]) | |
_cfg["num_classes"] = kwargs["num_classes"] | |
_cfg["classes"] = kwargs["classes"] | |
kwargs.pop("classes") | |
# Build the model | |
model = TextNet(**kwargs) | |
# Load pretrained parameters | |
if pretrained: | |
# The number of classes is not the same as the number of classes in the pretrained model => | |
# remove the last layer weights | |
_ignore_keys = ignore_keys if kwargs["num_classes"] != len(default_cfgs[arch]["classes"]) else None | |
load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys) | |
model.cfg = _cfg | |
return model | |
def textnet_tiny(pretrained: bool = False, **kwargs: Any) -> TextNet: | |
"""Implements TextNet architecture from `"FAST: Faster Arbitrarily-Shaped Text Detector with | |
Minimalist Kernel Representation" <https://arxiv.org/abs/2111.02394>`_. | |
Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_. | |
>>> import torch | |
>>> from doctr.models import textnet_tiny | |
>>> model = textnet_tiny(pretrained=False) | |
>>> input_tensor = torch.rand((1, 3, 512, 512), dtype=torch.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained: boolean, True if model is pretrained | |
**kwargs: keyword arguments of the TextNet architecture | |
Returns: | |
------- | |
A textnet tiny model | |
""" | |
return _textnet( | |
"textnet_tiny", | |
pretrained, | |
stages=[ | |
{"in_channels": [64] * 3, "out_channels": [64] * 3, "kernel_size": [(3, 3)] * 3, "stride": [1, 2, 1]}, | |
{ | |
"in_channels": [64, 128, 128, 128], | |
"out_channels": [128] * 4, | |
"kernel_size": [(3, 3), (1, 3), (3, 3), (3, 1)], | |
"stride": [2, 1, 1, 1], | |
}, | |
{ | |
"in_channels": [128, 256, 256, 256], | |
"out_channels": [256] * 4, | |
"kernel_size": [(3, 3), (3, 3), (3, 1), (1, 3)], | |
"stride": [2, 1, 1, 1], | |
}, | |
{ | |
"in_channels": [256, 512, 512, 512], | |
"out_channels": [512] * 4, | |
"kernel_size": [(3, 3), (3, 1), (1, 3), (3, 3)], | |
"stride": [2, 1, 1, 1], | |
}, | |
], | |
ignore_keys=["7.2.weight", "7.2.bias"], | |
**kwargs, | |
) | |
def textnet_small(pretrained: bool = False, **kwargs: Any) -> TextNet: | |
"""Implements TextNet architecture from `"FAST: Faster Arbitrarily-Shaped Text Detector with | |
Minimalist Kernel Representation" <https://arxiv.org/abs/2111.02394>`_. | |
Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_. | |
>>> import torch | |
>>> from doctr.models import textnet_small | |
>>> model = textnet_small(pretrained=False) | |
>>> input_tensor = torch.rand((1, 3, 512, 512), dtype=torch.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained: boolean, True if model is pretrained | |
**kwargs: keyword arguments of the TextNet architecture | |
Returns: | |
------- | |
A TextNet small model | |
""" | |
return _textnet( | |
"textnet_small", | |
pretrained, | |
stages=[ | |
{"in_channels": [64] * 2, "out_channels": [64] * 2, "kernel_size": [(3, 3)] * 2, "stride": [1, 2]}, | |
{ | |
"in_channels": [64, 128, 128, 128, 128, 128, 128, 128], | |
"out_channels": [128] * 8, | |
"kernel_size": [(3, 3), (1, 3), (3, 3), (3, 1), (3, 3), (3, 1), (1, 3), (3, 3)], | |
"stride": [2, 1, 1, 1, 1, 1, 1, 1], | |
}, | |
{ | |
"in_channels": [128, 256, 256, 256, 256, 256, 256, 256], | |
"out_channels": [256] * 8, | |
"kernel_size": [(3, 3), (3, 3), (1, 3), (3, 1), (3, 3), (1, 3), (3, 1), (3, 3)], | |
"stride": [2, 1, 1, 1, 1, 1, 1, 1], | |
}, | |
{ | |
"in_channels": [256, 512, 512, 512, 512], | |
"out_channels": [512] * 5, | |
"kernel_size": [(3, 3), (3, 1), (1, 3), (1, 3), (3, 1)], | |
"stride": [2, 1, 1, 1, 1], | |
}, | |
], | |
ignore_keys=["7.2.weight", "7.2.bias"], | |
**kwargs, | |
) | |
def textnet_base(pretrained: bool = False, **kwargs: Any) -> TextNet: | |
"""Implements TextNet architecture from `"FAST: Faster Arbitrarily-Shaped Text Detector with | |
Minimalist Kernel Representation" <https://arxiv.org/abs/2111.02394>`_. | |
Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_. | |
>>> import torch | |
>>> from doctr.models import textnet_base | |
>>> model = textnet_base(pretrained=False) | |
>>> input_tensor = torch.rand((1, 3, 512, 512), dtype=torch.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained: boolean, True if model is pretrained | |
**kwargs: keyword arguments of the TextNet architecture | |
Returns: | |
------- | |
A TextNet base model | |
""" | |
return _textnet( | |
"textnet_base", | |
pretrained, | |
stages=[ | |
{ | |
"in_channels": [64] * 10, | |
"out_channels": [64] * 10, | |
"kernel_size": [(3, 3), (3, 3), (3, 1), (3, 3), (3, 1), (3, 3), (3, 3), (1, 3), (3, 3), (3, 3)], | |
"stride": [1, 2, 1, 1, 1, 1, 1, 1, 1, 1], | |
}, | |
{ | |
"in_channels": [64, 128, 128, 128, 128, 128, 128, 128, 128, 128], | |
"out_channels": [128] * 10, | |
"kernel_size": [(3, 3), (1, 3), (3, 3), (3, 1), (3, 3), (3, 3), (3, 1), (3, 1), (3, 3), (3, 3)], | |
"stride": [2, 1, 1, 1, 1, 1, 1, 1, 1, 1], | |
}, | |
{ | |
"in_channels": [128, 256, 256, 256, 256, 256, 256, 256], | |
"out_channels": [256] * 8, | |
"kernel_size": [(3, 3), (3, 3), (3, 3), (1, 3), (3, 3), (3, 1), (3, 3), (3, 1)], | |
"stride": [2, 1, 1, 1, 1, 1, 1, 1], | |
}, | |
{ | |
"in_channels": [256, 512, 512, 512, 512], | |
"out_channels": [512] * 5, | |
"kernel_size": [(3, 3), (1, 3), (3, 1), (3, 1), (1, 3)], | |
"stride": [2, 1, 1, 1, 1], | |
}, | |
], | |
ignore_keys=["7.2.weight", "7.2.bias"], | |
**kwargs, | |
) | |