adirathor07's picture
added doctr folder
153628e
raw
history blame
15.8 kB
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
# Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Sequential, layers
from doctr.file_utils import CLASS_NAME
from doctr.models.utils import IntermediateLayerGetter, _bf16_to_float32, load_pretrained_params
from doctr.utils.repr import NestedObject
from ...classification import textnet_base, textnet_small, textnet_tiny
from ...modules.layers import FASTConvLayer
from .base import _FAST, FASTPostProcessor
__all__ = ["FAST", "fast_tiny", "fast_small", "fast_base", "reparameterize"]
default_cfgs: Dict[str, Dict[str, Any]] = {
"fast_tiny": {
"input_shape": (1024, 1024, 3),
"mean": (0.798, 0.785, 0.772),
"std": (0.264, 0.2749, 0.287),
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_tiny-959daecb.zip&src=0",
},
"fast_small": {
"input_shape": (1024, 1024, 3),
"mean": (0.798, 0.785, 0.772),
"std": (0.264, 0.2749, 0.287),
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_small-f1617503.zip&src=0",
},
"fast_base": {
"input_shape": (1024, 1024, 3),
"mean": (0.798, 0.785, 0.772),
"std": (0.264, 0.2749, 0.287),
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_base-255e2ac3.zip&src=0",
},
}
class FastNeck(layers.Layer, NestedObject):
"""Neck of the FAST architecture, composed of a series of 3x3 convolutions and upsampling layer.
Args:
----
in_channels: number of input channels
out_channels: number of output channels
"""
def __init__(
self,
in_channels: int,
out_channels: int = 128,
) -> None:
super().__init__()
self.reduction = [FASTConvLayer(in_channels * scale, out_channels, kernel_size=3) for scale in [1, 2, 4, 8]]
def _upsample(self, x: tf.Tensor, y: tf.Tensor) -> tf.Tensor:
return tf.image.resize(x, size=y.shape[1:3], method="bilinear")
def call(self, x: tf.Tensor, **kwargs: Any) -> tf.Tensor:
f1, f2, f3, f4 = x
f1, f2, f3, f4 = [reduction(f, **kwargs) for reduction, f in zip(self.reduction, (f1, f2, f3, f4))]
f2, f3, f4 = [self._upsample(f, f1) for f in (f2, f3, f4)]
f = tf.concat((f1, f2, f3, f4), axis=-1)
return f
class FastHead(Sequential):
"""Head of the FAST architecture
Args:
----
in_channels: number of input channels
num_classes: number of output classes
out_channels: number of output channels
dropout: dropout probability
"""
def __init__(
self,
in_channels: int,
num_classes: int,
out_channels: int = 128,
dropout: float = 0.1,
) -> None:
_layers = [
FASTConvLayer(in_channels, out_channels, kernel_size=3),
layers.Dropout(dropout),
layers.Conv2D(num_classes, kernel_size=1, use_bias=False),
]
super().__init__(_layers)
class FAST(_FAST, keras.Model, NestedObject):
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
<https://arxiv.org/pdf/2111.02394.pdf>`_.
Args:
----
feature extractor: the backbone serving as feature extractor
bin_thresh: threshold for binarization
box_thresh: minimal objectness score to consider a box
dropout_prob: dropout probability
pooling_size: size of the pooling layer
assume_straight_pages: if True, fit straight bounding boxes only
exportable: onnx exportable returns only logits
cfg: the configuration dict of the model
class_names: list of class names
"""
_children_names: List[str] = ["feat_extractor", "neck", "head", "postprocessor"]
def __init__(
self,
feature_extractor: IntermediateLayerGetter,
bin_thresh: float = 0.1,
box_thresh: float = 0.1,
dropout_prob: float = 0.1,
pooling_size: int = 4, # different from paper performs better on close text-rich images
assume_straight_pages: bool = True,
exportable: bool = False,
cfg: Optional[Dict[str, Any]] = {},
class_names: List[str] = [CLASS_NAME],
) -> None:
super().__init__()
self.class_names = class_names
num_classes: int = len(self.class_names)
self.cfg = cfg
self.feat_extractor = feature_extractor
self.exportable = exportable
self.assume_straight_pages = assume_straight_pages
# Identify the number of channels for the neck & head initialization
feat_out_channels = [
layers.Input(shape=in_shape[1:]).shape[-1] for in_shape in self.feat_extractor.output_shape
]
# Initialize neck & head
self.neck = FastNeck(feat_out_channels[0], feat_out_channels[1])
self.head = FastHead(feat_out_channels[-1], num_classes, feat_out_channels[1], dropout_prob)
# NOTE: The post processing from the paper works not well for text-rich images
# so we use a modified version from DBNet
self.postprocessor = FASTPostProcessor(
assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh
)
# Pooling layer as erosion reversal as described in the paper
self.pooling = layers.MaxPooling2D(pool_size=pooling_size // 2 + 1, strides=1, padding="same")
def compute_loss(
self,
out_map: tf.Tensor,
target: List[Dict[str, np.ndarray]],
eps: float = 1e-6,
) -> tf.Tensor:
"""Compute fast loss, 2 x Dice loss where the text kernel loss is scaled by 0.5.
Args:
----
out_map: output feature map of the model of shape (N, num_classes, H, W)
target: list of dictionary where each dict has a `boxes` and a `flags` entry
eps: epsilon factor in dice loss
Returns:
-------
A loss tensor
"""
targets = self.build_target(target, out_map.shape[1:], True)
seg_target = tf.convert_to_tensor(targets[0], dtype=out_map.dtype)
seg_mask = tf.convert_to_tensor(targets[1], dtype=out_map.dtype)
shrunken_kernel = tf.convert_to_tensor(targets[2], dtype=out_map.dtype)
def ohem(score: tf.Tensor, gt: tf.Tensor, mask: tf.Tensor) -> tf.Tensor:
pos_num = tf.reduce_sum(tf.cast(gt > 0.5, dtype=tf.int32)) - tf.reduce_sum(
tf.cast((gt > 0.5) & (mask <= 0.5), dtype=tf.int32)
)
neg_num = tf.reduce_sum(tf.cast(gt <= 0.5, dtype=tf.int32))
neg_num = tf.minimum(pos_num * 3, neg_num)
if neg_num == 0 or pos_num == 0:
return mask
neg_score_sorted, _ = tf.nn.top_k(-tf.boolean_mask(score, gt <= 0.5), k=neg_num)
threshold = -neg_score_sorted[-1]
selected_mask = tf.math.logical_and((score >= threshold) | (gt > 0.5), (mask > 0.5))
return tf.cast(selected_mask, dtype=tf.float32)
if len(self.class_names) > 1:
kernels = tf.nn.softmax(out_map, axis=-1)
prob_map = tf.nn.softmax(self.pooling(out_map), axis=-1)
else:
kernels = tf.sigmoid(out_map)
prob_map = tf.sigmoid(self.pooling(out_map))
# As described in the paper, we use the Dice loss for the text segmentation map and the Dice loss scaled by 0.5.
selected_masks = tf.stack(
[ohem(score, gt, mask) for score, gt, mask in zip(prob_map, seg_target, seg_mask)], axis=0
)
inter = tf.reduce_sum(selected_masks * prob_map * seg_target, axis=(0, 1, 2))
cardinality = tf.reduce_sum(selected_masks * (prob_map + seg_target), axis=(0, 1, 2))
text_loss = tf.reduce_mean((1 - 2 * inter / (cardinality + eps))) * 0.5
# As described in the paper, we use the Dice loss for the text kernel map.
selected_masks = seg_target * seg_mask
inter = tf.reduce_sum(selected_masks * kernels * shrunken_kernel, axis=(0, 1, 2))
cardinality = tf.reduce_sum(selected_masks * (kernels + shrunken_kernel), axis=(0, 1, 2))
kernel_loss = tf.reduce_mean((1 - 2 * inter / (cardinality + eps)))
return text_loss + kernel_loss
def call(
self,
x: tf.Tensor,
target: Optional[List[Dict[str, np.ndarray]]] = None,
return_model_output: bool = False,
return_preds: bool = False,
**kwargs: Any,
) -> Dict[str, Any]:
feat_maps = self.feat_extractor(x, **kwargs)
# Pass through the Neck & Head & Upsample
feat_concat = self.neck(feat_maps, **kwargs)
logits: tf.Tensor = self.head(feat_concat, **kwargs)
logits = layers.UpSampling2D(size=x.shape[-2] // logits.shape[-2], interpolation="bilinear")(logits, **kwargs)
out: Dict[str, tf.Tensor] = {}
if self.exportable:
out["logits"] = logits
return out
if return_model_output or target is None or return_preds:
prob_map = _bf16_to_float32(tf.math.sigmoid(self.pooling(logits, **kwargs)))
if return_model_output:
out["out_map"] = prob_map
if target is None or return_preds:
# Post-process boxes (keep only text predictions)
out["preds"] = [dict(zip(self.class_names, preds)) for preds in self.postprocessor(prob_map.numpy())]
if target is not None:
loss = self.compute_loss(logits, target)
out["loss"] = loss
return out
def reparameterize(model: Union[FAST, layers.Layer]) -> FAST:
"""Fuse batchnorm and conv layers and reparameterize the model
args:
----
model: the FAST model to reparameterize
Returns:
-------
the reparameterized model
"""
last_conv = None
last_conv_idx = None
for idx, layer in enumerate(model.layers):
if hasattr(layer, "layers") or isinstance(
layer, (FASTConvLayer, FastNeck, FastHead, layers.BatchNormalization, layers.Conv2D)
):
if isinstance(layer, layers.BatchNormalization):
# fuse batchnorm only if it is followed by a conv layer
if last_conv is None:
continue
conv_w = last_conv.kernel
conv_b = last_conv.bias if last_conv.use_bias else tf.zeros_like(layer.moving_mean)
factor = layer.gamma / tf.sqrt(layer.moving_variance + layer.epsilon)
last_conv.kernel = conv_w * factor.numpy().reshape([1, 1, 1, -1])
if last_conv.use_bias:
last_conv.bias.assign((conv_b - layer.moving_mean) * factor + layer.beta)
model.layers[last_conv_idx] = last_conv # Replace the last conv layer with the fused version
model.layers[idx] = layers.Lambda(lambda x: x)
last_conv = None
elif isinstance(layer, layers.Conv2D):
last_conv = layer
last_conv_idx = idx
elif isinstance(layer, FASTConvLayer):
layer.reparameterize_layer()
elif isinstance(layer, FastNeck):
for reduction in layer.reduction:
reduction.reparameterize_layer()
elif isinstance(layer, FastHead):
reparameterize(layer)
else:
reparameterize(layer)
return model
def _fast(
arch: str,
pretrained: bool,
backbone_fn,
feat_layers: List[str],
pretrained_backbone: bool = True,
input_shape: Optional[Tuple[int, int, int]] = None,
**kwargs: Any,
) -> FAST:
pretrained_backbone = pretrained_backbone and not pretrained
# Patch the config
_cfg = deepcopy(default_cfgs[arch])
_cfg["input_shape"] = input_shape or _cfg["input_shape"]
if not kwargs.get("class_names", None):
kwargs["class_names"] = _cfg.get("class_names", [CLASS_NAME])
else:
kwargs["class_names"] = sorted(kwargs["class_names"])
# Feature extractor
feat_extractor = IntermediateLayerGetter(
backbone_fn(
input_shape=_cfg["input_shape"],
include_top=False,
pretrained=pretrained_backbone,
),
feat_layers,
)
# Build the model
model = FAST(feat_extractor, cfg=_cfg, **kwargs)
# Load pretrained parameters
if pretrained:
load_pretrained_params(model, _cfg["url"])
# Build the model for reparameterization to access the layers
_ = model(tf.random.uniform(shape=[1, *_cfg["input_shape"]], maxval=1, dtype=tf.float32), training=False)
return model
def fast_tiny(pretrained: bool = False, **kwargs: Any) -> FAST:
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
<https://arxiv.org/pdf/2111.02394.pdf>`_, using a tiny TextNet backbone.
>>> import tensorflow as tf
>>> from doctr.models import fast_tiny
>>> model = fast_tiny(pretrained=True)
>>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text detection dataset
**kwargs: keyword arguments of the DBNet architecture
Returns:
-------
text detection architecture
"""
return _fast(
"fast_tiny",
pretrained,
textnet_tiny,
["stage_0", "stage_1", "stage_2", "stage_3"],
**kwargs,
)
def fast_small(pretrained: bool = False, **kwargs: Any) -> FAST:
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
<https://arxiv.org/pdf/2111.02394.pdf>`_, using a small TextNet backbone.
>>> import tensorflow as tf
>>> from doctr.models import fast_small
>>> model = fast_small(pretrained=True)
>>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text detection dataset
**kwargs: keyword arguments of the DBNet architecture
Returns:
-------
text detection architecture
"""
return _fast(
"fast_small",
pretrained,
textnet_small,
["stage_0", "stage_1", "stage_2", "stage_3"],
**kwargs,
)
def fast_base(pretrained: bool = False, **kwargs: Any) -> FAST:
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
<https://arxiv.org/pdf/2111.02394.pdf>`_, using a base TextNet backbone.
>>> import tensorflow as tf
>>> from doctr.models import fast_base
>>> model = fast_base(pretrained=True)
>>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text detection dataset
**kwargs: keyword arguments of the DBNet architecture
Returns:
-------
text detection architecture
"""
return _fast(
"fast_base",
pretrained,
textnet_base,
["stage_0", "stage_1", "stage_2", "stage_3"],
**kwargs,
)