Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
from typing import Any, Dict, List, Union | |
import numpy as np | |
import tensorflow as tf | |
from doctr.io.elements import Document | |
from doctr.models._utils import estimate_orientation, get_language, invert_data_structure | |
from doctr.models.detection.predictor import DetectionPredictor | |
from doctr.models.recognition.predictor import RecognitionPredictor | |
from doctr.utils.geometry import rotate_image | |
from doctr.utils.repr import NestedObject | |
from .base import _KIEPredictor | |
__all__ = ["KIEPredictor"] | |
class KIEPredictor(NestedObject, _KIEPredictor): | |
"""Implements an object able to localize and identify text elements in a set of documents | |
Args: | |
---- | |
det_predictor: detection module | |
reco_predictor: recognition module | |
assume_straight_pages: if True, speeds up the inference by assuming you only pass straight pages | |
without rotated textual elements. | |
straighten_pages: if True, estimates the page general orientation based on the median line orientation. | |
Then, rotates page before passing it to the deep learning modules. The final predictions will be remapped | |
accordingly. Doing so will improve performances for documents with page-uniform rotations. | |
detect_orientation: if True, the estimated general page orientation will be added to the predictions for each | |
page. Doing so will slightly deteriorate the overall latency. | |
detect_language: if True, the language prediction will be added to the predictions for each | |
page. Doing so will slightly deteriorate the overall latency. | |
**kwargs: keyword args of `DocumentBuilder` | |
""" | |
_children_names = ["det_predictor", "reco_predictor", "doc_builder"] | |
def __init__( | |
self, | |
det_predictor: DetectionPredictor, | |
reco_predictor: RecognitionPredictor, | |
assume_straight_pages: bool = True, | |
straighten_pages: bool = False, | |
preserve_aspect_ratio: bool = True, | |
symmetric_pad: bool = True, | |
detect_orientation: bool = False, | |
detect_language: bool = False, | |
**kwargs: Any, | |
) -> None: | |
self.det_predictor = det_predictor | |
self.reco_predictor = reco_predictor | |
_KIEPredictor.__init__( | |
self, assume_straight_pages, straighten_pages, preserve_aspect_ratio, symmetric_pad, **kwargs | |
) | |
self.detect_orientation = detect_orientation | |
self.detect_language = detect_language | |
def __call__( | |
self, | |
pages: List[Union[np.ndarray, tf.Tensor]], | |
**kwargs: Any, | |
) -> Document: | |
# Dimension check | |
if any(page.ndim != 3 for page in pages): | |
raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.") | |
origin_page_shapes = [page.shape[:2] for page in pages] | |
# Localize text elements | |
loc_preds, out_maps = self.det_predictor(pages, return_maps=True, **kwargs) | |
# Detect document rotation and rotate pages | |
seg_maps = [ | |
np.where(np.expand_dims(np.amax(out_map, axis=-1), axis=-1) > kwargs.get("bin_thresh", 0.3), 255, 0).astype( | |
np.uint8 | |
) | |
for out_map in out_maps | |
] | |
if self.detect_orientation: | |
origin_page_orientations = [estimate_orientation(seq_map) for seq_map in seg_maps] | |
orientations = [ | |
{"value": orientation_page, "confidence": None} for orientation_page in origin_page_orientations | |
] | |
else: | |
orientations = None | |
if self.straighten_pages: | |
origin_page_orientations = ( | |
origin_page_orientations | |
if self.detect_orientation | |
else [estimate_orientation(seq_map) for seq_map in seg_maps] | |
) | |
pages = [rotate_image(page, -angle, expand=False) for page, angle in zip(pages, origin_page_orientations)] | |
# Forward again to get predictions on straight pages | |
loc_preds = self.det_predictor(pages, **kwargs) # type: ignore[assignment] | |
dict_loc_preds: Dict[str, List[np.ndarray]] = invert_data_structure(loc_preds) # type: ignore | |
# Rectify crops if aspect ratio | |
dict_loc_preds = {k: self._remove_padding(pages, loc_pred) for k, loc_pred in dict_loc_preds.items()} | |
# Apply hooks to loc_preds if any | |
for hook in self.hooks: | |
dict_loc_preds = hook(dict_loc_preds) | |
# Crop images | |
crops = {} | |
for class_name in dict_loc_preds.keys(): | |
crops[class_name], dict_loc_preds[class_name] = self._prepare_crops( | |
pages, dict_loc_preds[class_name], channels_last=True, assume_straight_pages=self.assume_straight_pages | |
) | |
# Rectify crop orientation | |
crop_orientations: Any = {} | |
if not self.assume_straight_pages: | |
for class_name in dict_loc_preds.keys(): | |
crops[class_name], dict_loc_preds[class_name], word_orientations = self._rectify_crops( | |
crops[class_name], dict_loc_preds[class_name] | |
) | |
crop_orientations[class_name] = [ | |
{"value": orientation[0], "confidence": orientation[1]} for orientation in word_orientations | |
] | |
# Identify character sequences | |
word_preds = { | |
k: self.reco_predictor([crop for page_crops in crop_value for crop in page_crops], **kwargs) | |
for k, crop_value in crops.items() | |
} | |
if not crop_orientations: | |
crop_orientations = {k: [{"value": 0, "confidence": None} for _ in word_preds[k]] for k in word_preds} | |
boxes: Dict = {} | |
text_preds: Dict = {} | |
word_crop_orientations: Dict = {} | |
for class_name in dict_loc_preds.keys(): | |
boxes[class_name], text_preds[class_name], word_crop_orientations[class_name] = self._process_predictions( | |
dict_loc_preds[class_name], word_preds[class_name], crop_orientations[class_name] | |
) | |
boxes_per_page: List[Dict] = invert_data_structure(boxes) # type: ignore[assignment] | |
text_preds_per_page: List[Dict] = invert_data_structure(text_preds) # type: ignore[assignment] | |
crop_orientations_per_page: List[Dict] = invert_data_structure(word_crop_orientations) # type: ignore[assignment] | |
if self.detect_language: | |
languages = [get_language(self.get_text(text_pred)) for text_pred in text_preds_per_page] | |
languages_dict = [{"value": lang[0], "confidence": lang[1]} for lang in languages] | |
else: | |
languages_dict = None | |
out = self.doc_builder( | |
pages, | |
boxes_per_page, | |
text_preds_per_page, | |
origin_page_shapes, # type: ignore[arg-type] | |
crop_orientations_per_page, | |
orientations, | |
languages_dict, | |
) | |
return out | |
def get_text(text_pred: Dict) -> str: | |
text = [] | |
for value in text_pred.values(): | |
text += [item[0] for item in value] | |
return " ".join(text) | |