Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
from typing import Any, Tuple, Union | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras import layers | |
from doctr.utils.repr import NestedObject | |
__all__ = ["FASTConvLayer"] | |
class FASTConvLayer(layers.Layer, NestedObject): | |
"""Convolutional layer used in the TextNet and FAST architectures""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: Union[int, Tuple[int, int]], | |
stride: int = 1, | |
dilation: int = 1, | |
groups: int = 1, | |
bias: bool = False, | |
) -> None: | |
super().__init__() | |
self.groups = groups | |
self.in_channels = in_channels | |
self.converted_ks = (kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size | |
self.hor_conv, self.hor_bn = None, None | |
self.ver_conv, self.ver_bn = None, None | |
padding = ((self.converted_ks[0] - 1) * dilation // 2, (self.converted_ks[1] - 1) * dilation // 2) | |
self.activation = layers.ReLU() | |
self.conv_pad = layers.ZeroPadding2D(padding=padding) | |
self.conv = layers.Conv2D( | |
filters=out_channels, | |
kernel_size=self.converted_ks, | |
strides=stride, | |
dilation_rate=dilation, | |
groups=groups, | |
use_bias=bias, | |
) | |
self.bn = layers.BatchNormalization() | |
if self.converted_ks[1] != 1: | |
self.ver_pad = layers.ZeroPadding2D( | |
padding=(int(((self.converted_ks[0] - 1) * dilation) / 2), 0), | |
) | |
self.ver_conv = layers.Conv2D( | |
filters=out_channels, | |
kernel_size=(self.converted_ks[0], 1), | |
strides=stride, | |
dilation_rate=dilation, | |
groups=groups, | |
use_bias=bias, | |
) | |
self.ver_bn = layers.BatchNormalization() | |
if self.converted_ks[0] != 1: | |
self.hor_pad = layers.ZeroPadding2D( | |
padding=(0, int(((self.converted_ks[1] - 1) * dilation) / 2)), | |
) | |
self.hor_conv = layers.Conv2D( | |
filters=out_channels, | |
kernel_size=(1, self.converted_ks[1]), | |
strides=stride, | |
dilation_rate=dilation, | |
groups=groups, | |
use_bias=bias, | |
) | |
self.hor_bn = layers.BatchNormalization() | |
self.rbr_identity = layers.BatchNormalization() if out_channels == in_channels and stride == 1 else None | |
def call(self, x: tf.Tensor, **kwargs: Any) -> tf.Tensor: | |
if hasattr(self, "fused_conv"): | |
return self.activation(self.fused_conv(self.conv_pad(x, **kwargs), **kwargs)) | |
main_outputs = self.bn(self.conv(self.conv_pad(x, **kwargs), **kwargs), **kwargs) | |
vertical_outputs = ( | |
self.ver_bn(self.ver_conv(self.ver_pad(x, **kwargs), **kwargs), **kwargs) | |
if self.ver_conv is not None and self.ver_bn is not None | |
else 0 | |
) | |
horizontal_outputs = ( | |
self.hor_bn(self.hor_conv(self.hor_pad(x, **kwargs), **kwargs), **kwargs) | |
if self.hor_bn is not None and self.hor_conv is not None | |
else 0 | |
) | |
id_out = self.rbr_identity(x, **kwargs) if self.rbr_identity is not None else 0 | |
return self.activation(main_outputs + vertical_outputs + horizontal_outputs + id_out) | |
# The following logic is used to reparametrize the layer | |
# Adapted from: https://github.com/mindee/doctr/blob/main/doctr/models/modules/layers/pytorch.py | |
def _identity_to_conv( | |
self, identity: layers.BatchNormalization | |
) -> Union[Tuple[tf.Tensor, tf.Tensor], Tuple[int, int]]: | |
if identity is None or not hasattr(identity, "moving_mean") or not hasattr(identity, "moving_variance"): | |
return 0, 0 | |
if not hasattr(self, "id_tensor"): | |
input_dim = self.in_channels // self.groups | |
kernel_value = np.zeros((1, 1, input_dim, self.in_channels), dtype=np.float32) | |
for i in range(self.in_channels): | |
kernel_value[0, 0, i % input_dim, i] = 1 | |
id_tensor = tf.constant(kernel_value, dtype=tf.float32) | |
self.id_tensor = self._pad_to_mxn_tensor(id_tensor) | |
kernel = self.id_tensor | |
std = tf.sqrt(identity.moving_variance + identity.epsilon) | |
t = tf.reshape(identity.gamma / std, (1, 1, 1, -1)) | |
return kernel * t, identity.beta - identity.moving_mean * identity.gamma / std | |
def _fuse_bn_tensor(self, conv: layers.Conv2D, bn: layers.BatchNormalization) -> Tuple[tf.Tensor, tf.Tensor]: | |
kernel = conv.kernel | |
kernel = self._pad_to_mxn_tensor(kernel) | |
std = tf.sqrt(bn.moving_variance + bn.epsilon) | |
t = tf.reshape(bn.gamma / std, (1, 1, 1, -1)) | |
return kernel * t, bn.beta - bn.moving_mean * bn.gamma / std | |
def _get_equivalent_kernel_bias(self): | |
kernel_mxn, bias_mxn = self._fuse_bn_tensor(self.conv, self.bn) | |
if self.ver_conv is not None: | |
kernel_mx1, bias_mx1 = self._fuse_bn_tensor(self.ver_conv, self.ver_bn) | |
else: | |
kernel_mx1, bias_mx1 = 0, 0 | |
if self.hor_conv is not None: | |
kernel_1xn, bias_1xn = self._fuse_bn_tensor(self.hor_conv, self.hor_bn) | |
else: | |
kernel_1xn, bias_1xn = 0, 0 | |
kernel_id, bias_id = self._identity_to_conv(self.rbr_identity) | |
kernel_mxn = kernel_mxn + kernel_mx1 + kernel_1xn + kernel_id | |
bias_mxn = bias_mxn + bias_mx1 + bias_1xn + bias_id | |
return kernel_mxn, bias_mxn | |
def _pad_to_mxn_tensor(self, kernel: tf.Tensor) -> tf.Tensor: | |
kernel_height, kernel_width = self.converted_ks | |
height, width = kernel.shape[:2] | |
pad_left_right = tf.maximum(0, (kernel_width - width) // 2) | |
pad_top_down = tf.maximum(0, (kernel_height - height) // 2) | |
return tf.pad(kernel, [[pad_top_down, pad_top_down], [pad_left_right, pad_left_right], [0, 0], [0, 0]]) | |
def reparameterize_layer(self): | |
kernel, bias = self._get_equivalent_kernel_bias() | |
self.fused_conv = layers.Conv2D( | |
filters=self.conv.filters, | |
kernel_size=self.conv.kernel_size, | |
strides=self.conv.strides, | |
padding=self.conv.padding, | |
dilation_rate=self.conv.dilation_rate, | |
groups=self.conv.groups, | |
use_bias=True, | |
) | |
# build layer to initialize weights and biases | |
self.fused_conv.build(input_shape=(None, None, None, kernel.shape[-2])) | |
self.fused_conv.set_weights([kernel.numpy(), bias.numpy()]) | |
for para in self.trainable_variables: | |
para._trainable = False | |
for attr in ["conv", "bn", "ver_conv", "ver_bn", "hor_conv", "hor_bn"]: | |
if hasattr(self, attr): | |
delattr(self, attr) | |
if hasattr(self, "rbr_identity"): | |
delattr(self, "rbr_identity") | |