adirathor07's picture
added doctr folder
153628e
raw
history blame
7.15 kB
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from typing import Any, Tuple, Union
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
from doctr.utils.repr import NestedObject
__all__ = ["FASTConvLayer"]
class FASTConvLayer(layers.Layer, NestedObject):
"""Convolutional layer used in the TextNet and FAST architectures"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
stride: int = 1,
dilation: int = 1,
groups: int = 1,
bias: bool = False,
) -> None:
super().__init__()
self.groups = groups
self.in_channels = in_channels
self.converted_ks = (kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
self.hor_conv, self.hor_bn = None, None
self.ver_conv, self.ver_bn = None, None
padding = ((self.converted_ks[0] - 1) * dilation // 2, (self.converted_ks[1] - 1) * dilation // 2)
self.activation = layers.ReLU()
self.conv_pad = layers.ZeroPadding2D(padding=padding)
self.conv = layers.Conv2D(
filters=out_channels,
kernel_size=self.converted_ks,
strides=stride,
dilation_rate=dilation,
groups=groups,
use_bias=bias,
)
self.bn = layers.BatchNormalization()
if self.converted_ks[1] != 1:
self.ver_pad = layers.ZeroPadding2D(
padding=(int(((self.converted_ks[0] - 1) * dilation) / 2), 0),
)
self.ver_conv = layers.Conv2D(
filters=out_channels,
kernel_size=(self.converted_ks[0], 1),
strides=stride,
dilation_rate=dilation,
groups=groups,
use_bias=bias,
)
self.ver_bn = layers.BatchNormalization()
if self.converted_ks[0] != 1:
self.hor_pad = layers.ZeroPadding2D(
padding=(0, int(((self.converted_ks[1] - 1) * dilation) / 2)),
)
self.hor_conv = layers.Conv2D(
filters=out_channels,
kernel_size=(1, self.converted_ks[1]),
strides=stride,
dilation_rate=dilation,
groups=groups,
use_bias=bias,
)
self.hor_bn = layers.BatchNormalization()
self.rbr_identity = layers.BatchNormalization() if out_channels == in_channels and stride == 1 else None
def call(self, x: tf.Tensor, **kwargs: Any) -> tf.Tensor:
if hasattr(self, "fused_conv"):
return self.activation(self.fused_conv(self.conv_pad(x, **kwargs), **kwargs))
main_outputs = self.bn(self.conv(self.conv_pad(x, **kwargs), **kwargs), **kwargs)
vertical_outputs = (
self.ver_bn(self.ver_conv(self.ver_pad(x, **kwargs), **kwargs), **kwargs)
if self.ver_conv is not None and self.ver_bn is not None
else 0
)
horizontal_outputs = (
self.hor_bn(self.hor_conv(self.hor_pad(x, **kwargs), **kwargs), **kwargs)
if self.hor_bn is not None and self.hor_conv is not None
else 0
)
id_out = self.rbr_identity(x, **kwargs) if self.rbr_identity is not None else 0
return self.activation(main_outputs + vertical_outputs + horizontal_outputs + id_out)
# The following logic is used to reparametrize the layer
# Adapted from: https://github.com/mindee/doctr/blob/main/doctr/models/modules/layers/pytorch.py
def _identity_to_conv(
self, identity: layers.BatchNormalization
) -> Union[Tuple[tf.Tensor, tf.Tensor], Tuple[int, int]]:
if identity is None or not hasattr(identity, "moving_mean") or not hasattr(identity, "moving_variance"):
return 0, 0
if not hasattr(self, "id_tensor"):
input_dim = self.in_channels // self.groups
kernel_value = np.zeros((1, 1, input_dim, self.in_channels), dtype=np.float32)
for i in range(self.in_channels):
kernel_value[0, 0, i % input_dim, i] = 1
id_tensor = tf.constant(kernel_value, dtype=tf.float32)
self.id_tensor = self._pad_to_mxn_tensor(id_tensor)
kernel = self.id_tensor
std = tf.sqrt(identity.moving_variance + identity.epsilon)
t = tf.reshape(identity.gamma / std, (1, 1, 1, -1))
return kernel * t, identity.beta - identity.moving_mean * identity.gamma / std
def _fuse_bn_tensor(self, conv: layers.Conv2D, bn: layers.BatchNormalization) -> Tuple[tf.Tensor, tf.Tensor]:
kernel = conv.kernel
kernel = self._pad_to_mxn_tensor(kernel)
std = tf.sqrt(bn.moving_variance + bn.epsilon)
t = tf.reshape(bn.gamma / std, (1, 1, 1, -1))
return kernel * t, bn.beta - bn.moving_mean * bn.gamma / std
def _get_equivalent_kernel_bias(self):
kernel_mxn, bias_mxn = self._fuse_bn_tensor(self.conv, self.bn)
if self.ver_conv is not None:
kernel_mx1, bias_mx1 = self._fuse_bn_tensor(self.ver_conv, self.ver_bn)
else:
kernel_mx1, bias_mx1 = 0, 0
if self.hor_conv is not None:
kernel_1xn, bias_1xn = self._fuse_bn_tensor(self.hor_conv, self.hor_bn)
else:
kernel_1xn, bias_1xn = 0, 0
kernel_id, bias_id = self._identity_to_conv(self.rbr_identity)
kernel_mxn = kernel_mxn + kernel_mx1 + kernel_1xn + kernel_id
bias_mxn = bias_mxn + bias_mx1 + bias_1xn + bias_id
return kernel_mxn, bias_mxn
def _pad_to_mxn_tensor(self, kernel: tf.Tensor) -> tf.Tensor:
kernel_height, kernel_width = self.converted_ks
height, width = kernel.shape[:2]
pad_left_right = tf.maximum(0, (kernel_width - width) // 2)
pad_top_down = tf.maximum(0, (kernel_height - height) // 2)
return tf.pad(kernel, [[pad_top_down, pad_top_down], [pad_left_right, pad_left_right], [0, 0], [0, 0]])
def reparameterize_layer(self):
kernel, bias = self._get_equivalent_kernel_bias()
self.fused_conv = layers.Conv2D(
filters=self.conv.filters,
kernel_size=self.conv.kernel_size,
strides=self.conv.strides,
padding=self.conv.padding,
dilation_rate=self.conv.dilation_rate,
groups=self.conv.groups,
use_bias=True,
)
# build layer to initialize weights and biases
self.fused_conv.build(input_shape=(None, None, None, kernel.shape[-2]))
self.fused_conv.set_weights([kernel.numpy(), bias.numpy()])
for para in self.trainable_variables:
para._trainable = False
for attr in ["conv", "bn", "ver_conv", "ver_bn", "hor_conv", "hor_bn"]:
if hasattr(self, attr):
delattr(self, attr)
if hasattr(self, "rbr_identity"):
delattr(self, "rbr_identity")