Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import math | |
from copy import deepcopy | |
from itertools import permutations | |
from typing import Any, Dict, List, Optional, Tuple | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras import Model, layers | |
from doctr.datasets import VOCABS | |
from doctr.models.modules.transformer import MultiHeadAttention, PositionwiseFeedForward | |
from ...classification import vit_s | |
from ...utils.tensorflow import _bf16_to_float32, load_pretrained_params | |
from .base import _PARSeq, _PARSeqPostProcessor | |
__all__ = ["PARSeq", "parseq"] | |
default_cfgs: Dict[str, Dict[str, Any]] = { | |
"parseq": { | |
"mean": (0.694, 0.695, 0.693), | |
"std": (0.299, 0.296, 0.301), | |
"input_shape": (32, 128, 3), | |
"vocab": VOCABS["french"], | |
"url": "https://doctr-static.mindee.com/models?id=v0.6.0/parseq-24cf693e.zip&src=0", | |
}, | |
} | |
class CharEmbedding(layers.Layer): | |
"""Implements the character embedding module | |
Args: | |
---- | |
vocab_size: size of the vocabulary | |
d_model: dimension of the model | |
""" | |
def __init__(self, vocab_size: int, d_model: int): | |
super(CharEmbedding, self).__init__() | |
self.embedding = tf.keras.layers.Embedding(vocab_size, d_model) | |
self.d_model = d_model | |
def call(self, x: tf.Tensor, **kwargs: Any) -> tf.Tensor: | |
return math.sqrt(self.d_model) * self.embedding(x, **kwargs) | |
class PARSeqDecoder(layers.Layer): | |
"""Implements decoder module of the PARSeq model | |
Args: | |
---- | |
d_model: dimension of the model | |
num_heads: number of attention heads | |
ffd: dimension of the feed forward layer | |
ffd_ratio: depth multiplier for the feed forward layer | |
dropout: dropout rate | |
""" | |
def __init__( | |
self, | |
d_model: int, | |
num_heads: int = 12, | |
ffd: int = 2048, | |
ffd_ratio: int = 4, | |
dropout: float = 0.1, | |
): | |
super(PARSeqDecoder, self).__init__() | |
self.attention = MultiHeadAttention(num_heads, d_model, dropout=dropout) | |
self.cross_attention = MultiHeadAttention(num_heads, d_model, dropout=dropout) | |
self.position_feed_forward = PositionwiseFeedForward( | |
d_model, ffd * ffd_ratio, dropout, layers.Activation(tf.nn.gelu) | |
) | |
self.attention_norm = layers.LayerNormalization(epsilon=1e-5) | |
self.cross_attention_norm = layers.LayerNormalization(epsilon=1e-5) | |
self.query_norm = layers.LayerNormalization(epsilon=1e-5) | |
self.content_norm = layers.LayerNormalization(epsilon=1e-5) | |
self.feed_forward_norm = layers.LayerNormalization(epsilon=1e-5) | |
self.output_norm = layers.LayerNormalization(epsilon=1e-5) | |
self.attention_dropout = layers.Dropout(dropout) | |
self.cross_attention_dropout = layers.Dropout(dropout) | |
self.feed_forward_dropout = layers.Dropout(dropout) | |
def call( | |
self, | |
target, | |
content, | |
memory, | |
target_mask=None, | |
**kwargs: Any, | |
): | |
query_norm = self.query_norm(target, **kwargs) | |
content_norm = self.content_norm(content, **kwargs) | |
target = target + self.attention_dropout( | |
self.attention(query_norm, content_norm, content_norm, mask=target_mask, **kwargs), **kwargs | |
) | |
target = target + self.cross_attention_dropout( | |
self.cross_attention(self.query_norm(target, **kwargs), memory, memory, **kwargs), **kwargs | |
) | |
target = target + self.feed_forward_dropout( | |
self.position_feed_forward(self.feed_forward_norm(target, **kwargs), **kwargs), **kwargs | |
) | |
return self.output_norm(target, **kwargs) | |
class PARSeq(_PARSeq, Model): | |
"""Implements a PARSeq architecture as described in `"Scene Text Recognition | |
with Permuted Autoregressive Sequence Models" <https://arxiv.org/pdf/2207.06966>`_. | |
Modified implementation based on the official Pytorch implementation: <https://github.com/baudm/parseq/tree/main`_. | |
Args: | |
---- | |
feature_extractor: the backbone serving as feature extractor | |
vocab: vocabulary used for encoding | |
embedding_units: number of embedding units | |
max_length: maximum word length handled by the model | |
dropout_prob: dropout probability for the decoder | |
dec_num_heads: number of attention heads in the decoder | |
dec_ff_dim: dimension of the feed forward layer in the decoder | |
dec_ffd_ratio: depth multiplier for the feed forward layer in the decoder | |
input_shape: input shape of the image | |
exportable: onnx exportable returns only logits | |
cfg: dictionary containing information about the model | |
""" | |
_children_names: List[str] = ["feat_extractor", "postprocessor"] | |
def __init__( | |
self, | |
feature_extractor, | |
vocab: str, | |
embedding_units: int, | |
max_length: int = 32, # different from paper | |
dropout_prob: float = 0.1, | |
dec_num_heads: int = 12, | |
dec_ff_dim: int = 384, # we use it from the original implementation instead of 2048 | |
dec_ffd_ratio: int = 4, | |
input_shape: Tuple[int, int, int] = (32, 128, 3), | |
exportable: bool = False, | |
cfg: Optional[Dict[str, Any]] = None, | |
) -> None: | |
super().__init__() | |
self.vocab = vocab | |
self.exportable = exportable | |
self.cfg = cfg | |
self.max_length = max_length | |
self.vocab_size = len(vocab) | |
self.rng = np.random.default_rng() | |
self.feat_extractor = feature_extractor | |
self.decoder = PARSeqDecoder(embedding_units, dec_num_heads, dec_ff_dim, dec_ffd_ratio, dropout_prob) | |
self.embed = CharEmbedding(self.vocab_size + 3, embedding_units) # +3 for SOS, EOS, PAD | |
self.head = layers.Dense(self.vocab_size + 1, name="head") # +1 for EOS | |
self.pos_queries = self.add_weight( | |
shape=(1, self.max_length + 1, embedding_units), | |
initializer="zeros", | |
trainable=True, | |
name="positions", | |
) | |
self.dropout = layers.Dropout(dropout_prob) | |
self.postprocessor = PARSeqPostProcessor(vocab=self.vocab) | |
def generate_permutations(self, seqlen: tf.Tensor) -> tf.Tensor: | |
# Generates permutations of the target sequence. | |
# Translated from https://github.com/baudm/parseq/blob/main/strhub/models/parseq/system.py | |
# with small modifications | |
max_num_chars = int(tf.reduce_max(seqlen)) # get longest sequence length in batch | |
perms = [tf.range(max_num_chars, dtype=tf.int32)] | |
max_perms = math.factorial(max_num_chars) // 2 | |
num_gen_perms = min(3, max_perms) | |
if max_num_chars < 5: | |
# Pool of permutations to sample from. We only need the first half (if complementary option is selected) | |
# Special handling for max_num_chars == 4 which correctly divides the pool into the flipped halves | |
if max_num_chars == 4: | |
selector = [0, 3, 4, 6, 9, 10, 12, 16, 17, 18, 19, 21] | |
else: | |
selector = list(range(max_perms)) | |
perm_pool_candidates = list(permutations(range(max_num_chars), max_num_chars)) | |
perm_pool = tf.convert_to_tensor([perm_pool_candidates[i] for i in selector]) | |
# If the forward permutation is always selected, no need to add it to the pool for sampling | |
perm_pool = perm_pool[1:] | |
final_perms = tf.stack(perms) | |
if len(perm_pool): | |
i = self.rng.choice(len(perm_pool), size=num_gen_perms - len(final_perms), replace=False) | |
final_perms = tf.concat([final_perms, perm_pool[i[0] : i[1]]], axis=0) | |
else: | |
perms.extend([ | |
tf.random.shuffle(tf.range(max_num_chars, dtype=tf.int32)) for _ in range(num_gen_perms - len(perms)) | |
]) | |
final_perms = tf.stack(perms) | |
comp = tf.reverse(final_perms, axis=[-1]) | |
final_perms = tf.stack([final_perms, comp]) | |
final_perms = tf.transpose(final_perms, perm=[1, 0, 2]) | |
final_perms = tf.reshape(final_perms, shape=(-1, max_num_chars)) | |
sos_idx = tf.zeros([tf.shape(final_perms)[0], 1], dtype=tf.int32) | |
eos_idx = tf.fill([tf.shape(final_perms)[0], 1], max_num_chars + 1) | |
combined = tf.concat([sos_idx, final_perms + 1, eos_idx], axis=1) | |
combined = tf.cast(combined, dtype=tf.int32) | |
if tf.shape(combined)[0] > 1: | |
combined = tf.tensor_scatter_nd_update( | |
combined, [[1, i] for i in range(1, max_num_chars + 2)], max_num_chars + 1 - tf.range(max_num_chars + 1) | |
) | |
return combined | |
def generate_permutations_attention_masks(self, permutation: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]: | |
# Generate source and target mask for the decoder attention. | |
sz = permutation.shape[0] | |
mask = tf.ones((sz, sz), dtype=tf.float32) | |
for i in range(sz - 1): | |
query_idx = int(permutation[i]) | |
masked_keys = permutation[i + 1 :].numpy().tolist() | |
indices = tf.constant([[query_idx, j] for j in masked_keys], dtype=tf.int32) | |
mask = tf.tensor_scatter_nd_update(mask, indices, tf.zeros(len(masked_keys), dtype=tf.float32)) | |
source_mask = tf.identity(mask[:-1, :-1]) | |
eye_indices = tf.eye(sz, dtype=tf.bool) | |
mask = tf.tensor_scatter_nd_update( | |
mask, tf.where(eye_indices), tf.zeros_like(tf.boolean_mask(mask, eye_indices)) | |
) | |
target_mask = mask[1:, :-1] | |
return tf.cast(source_mask, dtype=tf.bool), tf.cast(target_mask, dtype=tf.bool) | |
def decode( | |
self, | |
target: tf.Tensor, | |
memory: tf, | |
target_mask: Optional[tf.Tensor] = None, | |
target_query: Optional[tf.Tensor] = None, | |
**kwargs: Any, | |
) -> tf.Tensor: | |
batch_size, sequence_length = target.shape | |
# apply positional information to the target sequence excluding the SOS token | |
null_ctx = self.embed(target[:, :1], **kwargs) | |
content = self.pos_queries[:, : sequence_length - 1] + self.embed(target[:, 1:], **kwargs) | |
content = self.dropout(tf.concat([null_ctx, content], axis=1), **kwargs) | |
if target_query is None: | |
target_query = tf.tile(self.pos_queries[:, :sequence_length], [batch_size, 1, 1]) | |
target_query = self.dropout(target_query, **kwargs) | |
return self.decoder(target_query, content, memory, target_mask, **kwargs) | |
def decode_autoregressive(self, features: tf.Tensor, max_len: Optional[int] = None, **kwargs) -> tf.Tensor: | |
"""Generate predictions for the given features.""" | |
max_length = max_len if max_len is not None else self.max_length | |
max_length = min(max_length, self.max_length) + 1 | |
b = tf.shape(features)[0] | |
# Padding symbol + SOS at the beginning | |
ys = tf.fill(dims=(b, max_length), value=self.vocab_size + 2) | |
start_vector = tf.fill(dims=(b, 1), value=self.vocab_size + 1) | |
ys = tf.concat([start_vector, ys], axis=-1) | |
pos_queries = tf.tile(self.pos_queries[:, :max_length], [b, 1, 1]) | |
query_mask = tf.cast(tf.linalg.band_part(tf.ones((max_length, max_length)), -1, 0), dtype=tf.bool) | |
pos_logits = [] | |
for i in range(max_length): | |
# Decode one token at a time without providing information about the future tokens | |
tgt_out = self.decode( | |
ys[:, : i + 1], | |
features, | |
query_mask[i : i + 1, : i + 1], | |
target_query=pos_queries[:, i : i + 1], | |
**kwargs, | |
) | |
pos_prob = self.head(tgt_out) | |
pos_logits.append(pos_prob) | |
if i + 1 < max_length: | |
# update ys with the next token | |
i_mesh, j_mesh = tf.meshgrid(tf.range(b), tf.range(max_length), indexing="ij") | |
indices = tf.stack([i_mesh[:, i + 1], j_mesh[:, i + 1]], axis=1) | |
ys = tf.tensor_scatter_nd_update( | |
ys, indices, tf.cast(tf.argmax(pos_prob[:, -1, :], axis=-1), dtype=tf.int32) | |
) | |
# Stop decoding if all sequences have reached the EOS token | |
# NOTE: `break` isn't correctly translated to Onnx so we don't break here if we want to export | |
if ( | |
not self.exportable | |
and max_len is None | |
and tf.reduce_any(tf.reduce_all(tf.equal(ys, tf.constant(self.vocab_size)), axis=-1)) | |
): | |
break | |
logits = tf.concat(pos_logits, axis=1) # (N, max_length, vocab_size + 1) | |
# One refine iteration | |
# Update query mask | |
diag_matrix = tf.eye(max_length) | |
diag_matrix = tf.cast(tf.logical_not(tf.cast(diag_matrix, dtype=tf.bool)), dtype=tf.float32) | |
query_mask = tf.cast(tf.concat([diag_matrix[1:], tf.ones((1, max_length))], axis=0), dtype=tf.bool) | |
sos = tf.fill((tf.shape(features)[0], 1), self.vocab_size + 1) | |
ys = tf.concat([sos, tf.cast(tf.argmax(logits[:, :-1], axis=-1), dtype=tf.int32)], axis=1) | |
# Create padding mask for refined target input maskes all behind EOS token as False | |
# (N, 1, 1, max_length) | |
mask = tf.cast(tf.equal(ys, self.vocab_size), tf.float32) | |
first_eos_indices = tf.argmax(mask, axis=1, output_type=tf.int32) | |
mask = tf.sequence_mask(first_eos_indices + 1, maxlen=ys.shape[-1], dtype=tf.float32) | |
target_pad_mask = tf.cast(mask[:, tf.newaxis, tf.newaxis, :], dtype=tf.bool) | |
mask = tf.math.logical_and(target_pad_mask, query_mask[:, : ys.shape[1]]) | |
logits = self.head(self.decode(ys, features, mask, target_query=pos_queries, **kwargs), **kwargs) | |
return logits # (N, max_length, vocab_size + 1) | |
def call( | |
self, | |
x: tf.Tensor, | |
target: Optional[List[str]] = None, | |
return_model_output: bool = False, | |
return_preds: bool = False, | |
**kwargs: Any, | |
) -> Dict[str, Any]: | |
features = self.feat_extractor(x, **kwargs) # (batch_size, patches_seqlen, d_model) | |
# remove cls token | |
features = features[:, 1:, :] | |
if kwargs.get("training", False) and target is None: | |
raise ValueError("Need to provide labels during training") | |
if target is not None: | |
gt, seq_len = self.build_target(target) | |
seq_len = tf.cast(seq_len, tf.int32) | |
gt = gt[:, : int(tf.reduce_max(seq_len)) + 2] # slice up to the max length of the batch + 2 (SOS + EOS) | |
if kwargs.get("training", False): | |
# Generate permutations of the target sequences | |
tgt_perms = self.generate_permutations(seq_len) | |
gt_in = gt[:, :-1] # remove EOS token from longest target sequence | |
gt_out = gt[:, 1:] # remove SOS token | |
# Create padding mask for target input | |
# [True, True, True, ..., False, False, False] -> False is masked | |
padding_mask = tf.math.logical_and( | |
tf.math.not_equal(gt_in, self.vocab_size + 2), tf.math.not_equal(gt_in, self.vocab_size) | |
) | |
padding_mask = padding_mask[:, tf.newaxis, tf.newaxis, :] # (N, 1, 1, seq_len) | |
loss = tf.constant(0.0) | |
loss_numel = tf.constant(0.0) | |
n = tf.reduce_sum(tf.cast(tf.math.not_equal(gt_out, self.vocab_size + 2), dtype=tf.float32)) | |
for i, perm in enumerate(tgt_perms): | |
_, target_mask = self.generate_permutations_attention_masks(perm) # (seq_len, seq_len) | |
# combine both masks to (N, 1, seq_len, seq_len) | |
mask = tf.logical_and(padding_mask, tf.expand_dims(tf.expand_dims(target_mask, axis=0), axis=0)) | |
logits = self.head(self.decode(gt_in, features, mask, **kwargs), **kwargs) | |
logits_flat = tf.reshape(logits, (-1, logits.shape[-1])) | |
targets_flat = tf.reshape(gt_out, (-1,)) | |
mask = tf.not_equal(targets_flat, self.vocab_size + 2) | |
loss += n * tf.reduce_mean( | |
tf.nn.sparse_softmax_cross_entropy_with_logits( | |
labels=tf.boolean_mask(targets_flat, mask), logits=tf.boolean_mask(logits_flat, mask) | |
) | |
) | |
loss_numel += n | |
# After the second iteration (i.e. done with canonical and reverse orderings), | |
# remove the [EOS] tokens for the succeeding perms | |
if i == 1: | |
gt_out = tf.where(tf.equal(gt_out, self.vocab_size), self.vocab_size + 2, gt_out) | |
n = tf.reduce_sum(tf.cast(tf.math.not_equal(gt_out, self.vocab_size + 2), dtype=tf.float32)) | |
loss /= loss_numel | |
else: | |
gt = gt[:, 1:] # remove SOS token | |
max_len = gt.shape[1] - 1 # exclude EOS token | |
logits = self.decode_autoregressive(features, max_len, **kwargs) | |
logits_flat = tf.reshape(logits, (-1, logits.shape[-1])) | |
targets_flat = tf.reshape(gt, (-1,)) | |
mask = tf.not_equal(targets_flat, self.vocab_size + 2) | |
loss = tf.reduce_mean( | |
tf.nn.sparse_softmax_cross_entropy_with_logits( | |
labels=tf.boolean_mask(targets_flat, mask), logits=tf.boolean_mask(logits_flat, mask) | |
) | |
) | |
else: | |
logits = self.decode_autoregressive(features, **kwargs) | |
logits = _bf16_to_float32(logits) | |
out: Dict[str, tf.Tensor] = {} | |
if self.exportable: | |
out["logits"] = logits | |
return out | |
if return_model_output: | |
out["out_map"] = logits | |
if target is None or return_preds: | |
# Post-process boxes | |
out["preds"] = self.postprocessor(logits) | |
if target is not None: | |
out["loss"] = loss | |
return out | |
class PARSeqPostProcessor(_PARSeqPostProcessor): | |
"""Post processor for PARSeq architecture | |
Args: | |
---- | |
vocab: string containing the ordered sequence of supported characters | |
""" | |
def __call__( | |
self, | |
logits: tf.Tensor, | |
) -> List[Tuple[str, float]]: | |
# compute pred with argmax for attention models | |
out_idxs = tf.math.argmax(logits, axis=2) | |
preds_prob = tf.math.reduce_max(tf.nn.softmax(logits, axis=-1), axis=-1) | |
# decode raw output of the model with tf_label_to_idx | |
out_idxs = tf.cast(out_idxs, dtype="int32") | |
embedding = tf.constant(self._embedding, dtype=tf.string) | |
decoded_strings_pred = tf.strings.reduce_join(inputs=tf.nn.embedding_lookup(embedding, out_idxs), axis=-1) | |
decoded_strings_pred = tf.strings.split(decoded_strings_pred, "<eos>") | |
decoded_strings_pred = tf.sparse.to_dense(decoded_strings_pred.to_sparse(), default_value="not valid")[:, 0] | |
word_values = [word.decode() for word in decoded_strings_pred.numpy().tolist()] | |
# compute probabilties for each word up to the EOS token | |
probs = [ | |
preds_prob[i, : len(word)].numpy().clip(0, 1).mean().item() if word else 0.0 | |
for i, word in enumerate(word_values) | |
] | |
return list(zip(word_values, probs)) | |
def _parseq( | |
arch: str, | |
pretrained: bool, | |
backbone_fn, | |
input_shape: Optional[Tuple[int, int, int]] = None, | |
**kwargs: Any, | |
) -> PARSeq: | |
# Patch the config | |
_cfg = deepcopy(default_cfgs[arch]) | |
_cfg["input_shape"] = input_shape or _cfg["input_shape"] | |
_cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"]) | |
patch_size = kwargs.get("patch_size", (4, 8)) | |
kwargs["vocab"] = _cfg["vocab"] | |
# Feature extractor | |
feat_extractor = backbone_fn( | |
# NOTE: we don't use a pretrained backbone for non-rectangular patches to avoid the pos embed mismatch | |
pretrained=False, | |
input_shape=_cfg["input_shape"], | |
patch_size=patch_size, | |
include_top=False, | |
) | |
kwargs.pop("patch_size", None) | |
kwargs.pop("pretrained_backbone", None) | |
# Build the model | |
model = PARSeq(feat_extractor, cfg=_cfg, **kwargs) | |
# Load pretrained parameters | |
if pretrained: | |
load_pretrained_params(model, default_cfgs[arch]["url"]) | |
return model | |
def parseq(pretrained: bool = False, **kwargs: Any) -> PARSeq: | |
"""PARSeq architecture from | |
`"Scene Text Recognition with Permuted Autoregressive Sequence Models" <https://arxiv.org/pdf/2207.06966>`_. | |
>>> import tensorflow as tf | |
>>> from doctr.models import parseq | |
>>> model = parseq(pretrained=False) | |
>>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained (bool): If True, returns a model pre-trained on our text recognition dataset | |
**kwargs: keyword arguments of the PARSeq architecture | |
Returns: | |
------- | |
text recognition architecture | |
""" | |
return _parseq( | |
"parseq", | |
pretrained, | |
vit_s, | |
embedding_units=384, | |
patch_size=(4, 8), | |
**kwargs, | |
) | |