Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import json | |
import os | |
from typing import Any, Dict, List, Tuple | |
import numpy as np | |
from .datasets import VisionDataset | |
__all__ = ["DocArtefacts"] | |
class DocArtefacts(VisionDataset): | |
"""Object detection dataset for non-textual elements in documents. | |
The dataset includes a variety of synthetic document pages with non-textual elements. | |
.. image:: https://doctr-static.mindee.com/models?id=v0.5.0/artefacts-grid.png&src=0 | |
:align: center | |
>>> from doctr.datasets import DocArtefacts | |
>>> train_set = DocArtefacts(train=True, download=True) | |
>>> img, target = train_set[0] | |
Args: | |
---- | |
train: whether the subset should be the training one | |
use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) | |
**kwargs: keyword arguments from `VisionDataset`. | |
""" | |
URL = "https://doctr-static.mindee.com/models?id=v0.4.0/artefact_detection-13fab8ce.zip&src=0" | |
SHA256 = "13fab8ced7f84583d9dccd0c634f046c3417e62a11fe1dea6efbbaba5052471b" | |
CLASSES = ["background", "qr_code", "bar_code", "logo", "photo"] | |
def __init__( | |
self, | |
train: bool = True, | |
use_polygons: bool = False, | |
**kwargs: Any, | |
) -> None: | |
super().__init__(self.URL, None, self.SHA256, True, **kwargs) | |
self.train = train | |
# Update root | |
self.root = os.path.join(self.root, "train" if train else "val") | |
# List images | |
tmp_root = os.path.join(self.root, "images") | |
with open(os.path.join(self.root, "labels.json"), "rb") as f: | |
labels = json.load(f) | |
self.data: List[Tuple[str, Dict[str, Any]]] = [] | |
img_list = os.listdir(tmp_root) | |
if len(labels) != len(img_list): | |
raise AssertionError("the number of images and labels do not match") | |
np_dtype = np.float32 | |
for img_name, label in labels.items(): | |
# File existence check | |
if not os.path.exists(os.path.join(tmp_root, img_name)): | |
raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, img_name)}") | |
# xmin, ymin, xmax, ymax | |
boxes: np.ndarray = np.asarray([obj["geometry"] for obj in label], dtype=np_dtype) | |
classes: np.ndarray = np.asarray([self.CLASSES.index(obj["label"]) for obj in label], dtype=np.int64) | |
if use_polygons: | |
# (x, y) coordinates of top left, top right, bottom right, bottom left corners | |
boxes = np.stack( | |
[ | |
np.stack([boxes[:, 0], boxes[:, 1]], axis=-1), | |
np.stack([boxes[:, 2], boxes[:, 1]], axis=-1), | |
np.stack([boxes[:, 2], boxes[:, 3]], axis=-1), | |
np.stack([boxes[:, 0], boxes[:, 3]], axis=-1), | |
], | |
axis=1, | |
) | |
self.data.append((img_name, dict(boxes=boxes, labels=classes))) | |
self.root = tmp_root | |
def extra_repr(self) -> str: | |
return f"train={self.train}" | |