Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import json | |
import os | |
from pathlib import Path | |
from typing import Any, Dict, List, Tuple, Union | |
import numpy as np | |
from tqdm import tqdm | |
from .datasets import VisionDataset | |
from .utils import convert_target_to_relative, crop_bboxes_from_image | |
__all__ = ["FUNSD"] | |
class FUNSD(VisionDataset): | |
"""FUNSD dataset from `"FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents" | |
<https://arxiv.org/pdf/1905.13538.pdf>`_. | |
.. image:: https://doctr-static.mindee.com/models?id=v0.5.0/funsd-grid.png&src=0 | |
:align: center | |
>>> from doctr.datasets import FUNSD | |
>>> train_set = FUNSD(train=True, download=True) | |
>>> img, target = train_set[0] | |
Args: | |
---- | |
train: whether the subset should be the training one | |
use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) | |
recognition_task: whether the dataset should be used for recognition task | |
**kwargs: keyword arguments from `VisionDataset`. | |
""" | |
URL = "https://guillaumejaume.github.io/FUNSD/dataset.zip" | |
SHA256 = "c31735649e4f441bcbb4fd0f379574f7520b42286e80b01d80b445649d54761f" | |
FILE_NAME = "funsd.zip" | |
def __init__( | |
self, | |
train: bool = True, | |
use_polygons: bool = False, | |
recognition_task: bool = False, | |
**kwargs: Any, | |
) -> None: | |
super().__init__( | |
self.URL, | |
self.FILE_NAME, | |
self.SHA256, | |
True, | |
pre_transforms=convert_target_to_relative if not recognition_task else None, | |
**kwargs, | |
) | |
self.train = train | |
np_dtype = np.float32 | |
# Use the subset | |
subfolder = os.path.join("dataset", "training_data" if train else "testing_data") | |
# # List images | |
tmp_root = os.path.join(self.root, subfolder, "images") | |
self.data: List[Tuple[Union[str, np.ndarray], Union[str, Dict[str, Any]]]] = [] | |
for img_path in tqdm(iterable=os.listdir(tmp_root), desc="Unpacking FUNSD", total=len(os.listdir(tmp_root))): | |
# File existence check | |
if not os.path.exists(os.path.join(tmp_root, img_path)): | |
raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, img_path)}") | |
stem = Path(img_path).stem | |
with open(os.path.join(self.root, subfolder, "annotations", f"{stem}.json"), "rb") as f: | |
data = json.load(f) | |
_targets = [ | |
(word["text"], word["box"]) | |
for block in data["form"] | |
for word in block["words"] | |
if len(word["text"]) > 0 | |
] | |
text_targets, box_targets = zip(*_targets) | |
if use_polygons: | |
# xmin, ymin, xmax, ymax -> (x, y) coordinates of top left, top right, bottom right, bottom left corners | |
box_targets = [ # type: ignore[assignment] | |
[ | |
[box[0], box[1]], | |
[box[2], box[1]], | |
[box[2], box[3]], | |
[box[0], box[3]], | |
] | |
for box in box_targets | |
] | |
if recognition_task: | |
crops = crop_bboxes_from_image( | |
img_path=os.path.join(tmp_root, img_path), geoms=np.asarray(box_targets, dtype=np_dtype) | |
) | |
for crop, label in zip(crops, list(text_targets)): | |
# filter labels with unknown characters | |
if not any(char in label for char in ["β", "β", "\uf703", "\uf702"]): | |
self.data.append((crop, label)) | |
else: | |
self.data.append(( | |
img_path, | |
dict(boxes=np.asarray(box_targets, dtype=np_dtype), labels=list(text_targets)), | |
)) | |
self.root = tmp_root | |
def extra_repr(self) -> str: | |
return f"train={self.train}" | |