Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import csv | |
import os | |
from pathlib import Path | |
from typing import Any, Dict, List, Tuple, Union | |
import numpy as np | |
from tqdm import tqdm | |
from .datasets import AbstractDataset | |
from .utils import convert_target_to_relative, crop_bboxes_from_image | |
__all__ = ["IC13"] | |
class IC13(AbstractDataset): | |
"""IC13 dataset from `"ICDAR 2013 Robust Reading Competition" <https://rrc.cvc.uab.es/>`_. | |
.. image:: https://doctr-static.mindee.com/models?id=v0.5.0/ic13-grid.png&src=0 | |
:align: center | |
>>> # NOTE: You need to download both image and label parts from Focused Scene Text challenge Task2.1 2013-2015. | |
>>> from doctr.datasets import IC13 | |
>>> train_set = IC13(img_folder="/path/to/Challenge2_Training_Task12_Images", | |
>>> label_folder="/path/to/Challenge2_Training_Task1_GT") | |
>>> img, target = train_set[0] | |
>>> test_set = IC13(img_folder="/path/to/Challenge2_Test_Task12_Images", | |
>>> label_folder="/path/to/Challenge2_Test_Task1_GT") | |
>>> img, target = test_set[0] | |
Args: | |
---- | |
img_folder: folder with all the images of the dataset | |
label_folder: folder with all annotation files for the images | |
use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) | |
recognition_task: whether the dataset should be used for recognition task | |
**kwargs: keyword arguments from `AbstractDataset`. | |
""" | |
def __init__( | |
self, | |
img_folder: str, | |
label_folder: str, | |
use_polygons: bool = False, | |
recognition_task: bool = False, | |
**kwargs: Any, | |
) -> None: | |
super().__init__( | |
img_folder, pre_transforms=convert_target_to_relative if not recognition_task else None, **kwargs | |
) | |
# File existence check | |
if not os.path.exists(label_folder) or not os.path.exists(img_folder): | |
raise FileNotFoundError( | |
f"unable to locate {label_folder if not os.path.exists(label_folder) else img_folder}" | |
) | |
self.data: List[Tuple[Union[Path, np.ndarray], Union[str, Dict[str, Any]]]] = [] | |
np_dtype = np.float32 | |
img_names = os.listdir(img_folder) | |
for img_name in tqdm(iterable=img_names, desc="Unpacking IC13", total=len(img_names)): | |
img_path = Path(img_folder, img_name) | |
label_path = Path(label_folder, "gt_" + Path(img_name).stem + ".txt") | |
with open(label_path, newline="\n") as f: | |
_lines = [ | |
[val[:-1] if val.endswith(",") else val for val in row] | |
for row in csv.reader(f, delimiter=" ", quotechar="'") | |
] | |
labels = [line[-1].replace('"', "") for line in _lines] | |
# xmin, ymin, xmax, ymax | |
box_targets: np.ndarray = np.array([list(map(int, line[:4])) for line in _lines], dtype=np_dtype) | |
if use_polygons: | |
# (x, y) coordinates of top left, top right, bottom right, bottom left corners | |
box_targets = np.array( | |
[ | |
[ | |
[coords[0], coords[1]], | |
[coords[2], coords[1]], | |
[coords[2], coords[3]], | |
[coords[0], coords[3]], | |
] | |
for coords in box_targets | |
], | |
dtype=np_dtype, | |
) | |
if recognition_task: | |
crops = crop_bboxes_from_image(img_path=img_path, geoms=box_targets) | |
for crop, label in zip(crops, labels): | |
self.data.append((crop, label)) | |
else: | |
self.data.append((img_path, dict(boxes=box_targets, labels=labels))) | |