Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import os | |
from typing import Any, Dict, List, Tuple, Union | |
import numpy as np | |
import scipy.io as sio | |
from tqdm import tqdm | |
from .datasets import VisionDataset | |
from .utils import convert_target_to_relative | |
__all__ = ["IIIT5K"] | |
class IIIT5K(VisionDataset): | |
"""IIIT-5K character-level localization dataset from | |
`"BMVC 2012 Scene Text Recognition using Higher Order Language Priors" | |
<https://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/images/Projects/SceneTextUnderstanding/home/mishraBMVC12.pdf>`_. | |
.. image:: https://doctr-static.mindee.com/models?id=v0.5.0/iiit5k-grid.png&src=0 | |
:align: center | |
>>> # NOTE: this dataset is for character-level localization | |
>>> from doctr.datasets import IIIT5K | |
>>> train_set = IIIT5K(train=True, download=True) | |
>>> img, target = train_set[0] | |
Args: | |
---- | |
train: whether the subset should be the training one | |
use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) | |
recognition_task: whether the dataset should be used for recognition task | |
**kwargs: keyword arguments from `VisionDataset`. | |
""" | |
URL = "https://cvit.iiit.ac.in/images/Projects/SceneTextUnderstanding/IIIT5K-Word_V3.0.tar.gz" | |
SHA256 = "7872c9efbec457eb23f3368855e7738f72ce10927f52a382deb4966ca0ffa38e" | |
def __init__( | |
self, | |
train: bool = True, | |
use_polygons: bool = False, | |
recognition_task: bool = False, | |
**kwargs: Any, | |
) -> None: | |
super().__init__( | |
self.URL, | |
None, | |
file_hash=self.SHA256, | |
extract_archive=True, | |
pre_transforms=convert_target_to_relative if not recognition_task else None, | |
**kwargs, | |
) | |
self.train = train | |
# Load mat data | |
tmp_root = os.path.join(self.root, "IIIT5K") if self.SHA256 else self.root | |
mat_file = "trainCharBound" if self.train else "testCharBound" | |
mat_data = sio.loadmat(os.path.join(tmp_root, f"{mat_file}.mat"))[mat_file][0] | |
self.data: List[Tuple[Union[str, np.ndarray], Union[str, Dict[str, Any]]]] = [] | |
np_dtype = np.float32 | |
for img_path, label, box_targets in tqdm(iterable=mat_data, desc="Unpacking IIIT5K", total=len(mat_data)): | |
_raw_path = img_path[0] | |
_raw_label = label[0] | |
# File existence check | |
if not os.path.exists(os.path.join(tmp_root, _raw_path)): | |
raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, _raw_path)}") | |
if recognition_task: | |
self.data.append((_raw_path, _raw_label)) | |
else: | |
if use_polygons: | |
# (x, y) coordinates of top left, top right, bottom right, bottom left corners | |
box_targets = [ | |
[ | |
[box[0], box[1]], | |
[box[0] + box[2], box[1]], | |
[box[0] + box[2], box[1] + box[3]], | |
[box[0], box[1] + box[3]], | |
] | |
for box in box_targets | |
] | |
else: | |
# xmin, ymin, xmax, ymax | |
box_targets = [[box[0], box[1], box[0] + box[2], box[1] + box[3]] for box in box_targets] | |
# label are casted to list where each char corresponds to the character's bounding box | |
self.data.append(( | |
_raw_path, | |
dict(boxes=np.asarray(box_targets, dtype=np_dtype), labels=list(_raw_label)), | |
)) | |
self.root = tmp_root | |
def extra_repr(self) -> str: | |
return f"train={self.train}" | |