Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import os | |
from random import sample | |
from typing import Any, List, Tuple | |
from tqdm import tqdm | |
from .datasets import AbstractDataset | |
__all__ = ["IIITHWS"] | |
class IIITHWS(AbstractDataset): | |
"""IIITHWS dataset from `"Generating Synthetic Data for Text Recognition" | |
<https://arxiv.org/pdf/1608.04224.pdf>`_ | `"repository" <https://github.com/kris314/hwnet>`_ | | |
`"website" <https://cvit.iiit.ac.in/research/projects/cvit-projects/matchdocimgs>`_. | |
>>> # NOTE: This is a pure recognition dataset without bounding box labels. | |
>>> # NOTE: You need to download the dataset. | |
>>> from doctr.datasets import IIITHWS | |
>>> train_set = IIITHWS(img_folder="/path/to/iiit-hws/Images_90K_Normalized", | |
>>> label_path="/path/to/IIIT-HWS-90K.txt", | |
>>> train=True) | |
>>> img, target = train_set[0] | |
>>> test_set = IIITHWS(img_folder="/path/to/iiit-hws/Images_90K_Normalized", | |
>>> label_path="/path/to/IIIT-HWS-90K.txt") | |
>>> train=False) | |
>>> img, target = test_set[0] | |
Args: | |
---- | |
img_folder: folder with all the images of the dataset | |
label_path: path to the file with the labels | |
train: whether the subset should be the training one | |
**kwargs: keyword arguments from `AbstractDataset`. | |
""" | |
def __init__( | |
self, | |
img_folder: str, | |
label_path: str, | |
train: bool = True, | |
**kwargs: Any, | |
) -> None: | |
super().__init__(img_folder, **kwargs) | |
# File existence check | |
if not os.path.exists(label_path) or not os.path.exists(img_folder): | |
raise FileNotFoundError(f"unable to locate {label_path if not os.path.exists(label_path) else img_folder}") | |
self.data: List[Tuple[str, str]] = [] | |
self.train = train | |
with open(label_path) as f: | |
annotations = f.readlines() | |
# Shuffle the dataset otherwise the test set will contain the same labels n times | |
annotations = sample(annotations, len(annotations)) | |
train_samples = int(len(annotations) * 0.9) | |
set_slice = slice(train_samples) if self.train else slice(train_samples, None) | |
for annotation in tqdm( | |
iterable=annotations[set_slice], desc="Unpacking IIITHWS", total=len(annotations[set_slice]) | |
): | |
img_path, label = annotation.split()[0:2] | |
img_path = os.path.join(img_folder, img_path) | |
self.data.append((img_path, label)) | |
def extra_repr(self) -> str: | |
return f"train={self.train}" | |