Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import json | |
import os | |
from pathlib import Path | |
from typing import Any, Dict, List, Tuple | |
import numpy as np | |
from .datasets import AbstractDataset | |
__all__ = ["OCRDataset"] | |
class OCRDataset(AbstractDataset): | |
"""Implements an OCR dataset | |
>>> from doctr.datasets import OCRDataset | |
>>> train_set = OCRDataset(img_folder="/path/to/images", | |
>>> label_file="/path/to/labels.json") | |
>>> img, target = train_set[0] | |
Args: | |
---- | |
img_folder: local path to image folder (all jpg at the root) | |
label_file: local path to the label file | |
use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) | |
**kwargs: keyword arguments from `AbstractDataset`. | |
""" | |
def __init__( | |
self, | |
img_folder: str, | |
label_file: str, | |
use_polygons: bool = False, | |
**kwargs: Any, | |
) -> None: | |
super().__init__(img_folder, **kwargs) | |
# List images | |
self.data: List[Tuple[str, Dict[str, Any]]] = [] | |
np_dtype = np.float32 | |
with open(label_file, "rb") as f: | |
data = json.load(f) | |
for img_name, annotations in data.items(): | |
# Get image path | |
img_name = Path(img_name) | |
# File existence check | |
if not os.path.exists(os.path.join(self.root, img_name)): | |
raise FileNotFoundError(f"unable to locate {os.path.join(self.root, img_name)}") | |
# handle empty images | |
if len(annotations["typed_words"]) == 0: | |
self.data.append((img_name, dict(boxes=np.zeros((0, 4), dtype=np_dtype), labels=[]))) | |
continue | |
# Unpack the straight boxes (xmin, ymin, xmax, ymax) | |
geoms = [list(map(float, obj["geometry"][:4])) for obj in annotations["typed_words"]] | |
if use_polygons: | |
# (x, y) coordinates of top left, top right, bottom right, bottom left corners | |
geoms = [ | |
[geom[:2], [geom[2], geom[1]], geom[2:], [geom[0], geom[3]]] # type: ignore[list-item] | |
for geom in geoms | |
] | |
text_targets = [obj["value"] for obj in annotations["typed_words"]] | |
self.data.append((img_name, dict(boxes=np.asarray(geoms, dtype=np_dtype), labels=text_targets))) | |