adirathor07's picture
added doctr folder
153628e
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
import string
import unicodedata
from collections.abc import Sequence
from functools import partial
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, TypeVar, Union
from typing import Sequence as SequenceType
import numpy as np
from PIL import Image
from doctr.io.image import get_img_shape
from doctr.utils.geometry import convert_to_relative_coords, extract_crops, extract_rcrops
from .vocabs import VOCABS
__all__ = ["translate", "encode_string", "decode_sequence", "encode_sequences", "pre_transform_multiclass"]
ImageTensor = TypeVar("ImageTensor")
def translate(
input_string: str,
vocab_name: str,
unknown_char: str = "β– ",
) -> str:
"""Translate a string input in a given vocabulary
Args:
----
input_string: input string to translate
vocab_name: vocabulary to use (french, latin, ...)
unknown_char: unknown character for non-translatable characters
Returns:
-------
A string translated in a given vocab
"""
if VOCABS.get(vocab_name) is None:
raise KeyError("output vocabulary must be in vocabs dictionnary")
translated = ""
for char in input_string:
if char not in VOCABS[vocab_name]:
# we need to translate char into a vocab char
if char in string.whitespace:
# remove whitespaces
continue
# normalize character if it is not in vocab
char = unicodedata.normalize("NFD", char).encode("ascii", "ignore").decode("ascii")
if char == "" or char not in VOCABS[vocab_name]:
# if normalization fails or char still not in vocab, return unknown character)
char = unknown_char
translated += char
return translated
def encode_string(
input_string: str,
vocab: str,
) -> List[int]:
"""Given a predefined mapping, encode the string to a sequence of numbers
Args:
----
input_string: string to encode
vocab: vocabulary (string), the encoding is given by the indexing of the character sequence
Returns:
-------
A list encoding the input_string
"""
try:
return list(map(vocab.index, input_string))
except ValueError:
raise ValueError(
f"some characters cannot be found in 'vocab'. \
Please check the input string {input_string} and the vocabulary {vocab}"
)
def decode_sequence(
input_seq: Union[np.ndarray, SequenceType[int]],
mapping: str,
) -> str:
"""Given a predefined mapping, decode the sequence of numbers to a string
Args:
----
input_seq: array to decode
mapping: vocabulary (string), the encoding is given by the indexing of the character sequence
Returns:
-------
A string, decoded from input_seq
"""
if not isinstance(input_seq, (Sequence, np.ndarray)):
raise TypeError("Invalid sequence type")
if isinstance(input_seq, np.ndarray) and (input_seq.dtype != np.int_ or input_seq.max() >= len(mapping)):
raise AssertionError("Input must be an array of int, with max less than mapping size")
return "".join(map(mapping.__getitem__, input_seq))
def encode_sequences(
sequences: List[str],
vocab: str,
target_size: Optional[int] = None,
eos: int = -1,
sos: Optional[int] = None,
pad: Optional[int] = None,
dynamic_seq_length: bool = False,
) -> np.ndarray:
"""Encode character sequences using a given vocab as mapping
Args:
----
sequences: the list of character sequences of size N
vocab: the ordered vocab to use for encoding
target_size: maximum length of the encoded data
eos: encoding of End Of String
sos: optional encoding of Start Of String
pad: optional encoding for padding. In case of padding, all sequences are followed by 1 EOS then PAD
dynamic_seq_length: if `target_size` is specified, uses it as upper bound and enables dynamic sequence size
Returns:
-------
the padded encoded data as a tensor
"""
if 0 <= eos < len(vocab):
raise ValueError("argument 'eos' needs to be outside of vocab possible indices")
if not isinstance(target_size, int) or dynamic_seq_length:
# Maximum string length + EOS
max_length = max(len(w) for w in sequences) + 1
if isinstance(sos, int):
max_length += 1
if isinstance(pad, int):
max_length += 1
target_size = max_length if not isinstance(target_size, int) else min(max_length, target_size)
# Pad all sequences
if isinstance(pad, int): # pad with padding symbol
if 0 <= pad < len(vocab):
raise ValueError("argument 'pad' needs to be outside of vocab possible indices")
# In that case, add EOS at the end of the word before padding
default_symbol = pad
else: # pad with eos symbol
default_symbol = eos
encoded_data: np.ndarray = np.full([len(sequences), target_size], default_symbol, dtype=np.int32)
# Encode the strings
for idx, seq in enumerate(map(partial(encode_string, vocab=vocab), sequences)):
if isinstance(pad, int): # add eos at the end of the sequence
seq.append(eos)
encoded_data[idx, : min(len(seq), target_size)] = seq[: min(len(seq), target_size)]
if isinstance(sos, int): # place sos symbol at the beginning of each sequence
if 0 <= sos < len(vocab):
raise ValueError("argument 'sos' needs to be outside of vocab possible indices")
encoded_data = np.roll(encoded_data, 1)
encoded_data[:, 0] = sos
return encoded_data
def convert_target_to_relative(img: ImageTensor, target: Dict[str, Any]) -> Tuple[ImageTensor, Dict[str, Any]]:
target["boxes"] = convert_to_relative_coords(target["boxes"], get_img_shape(img))
return img, target
def crop_bboxes_from_image(img_path: Union[str, Path], geoms: np.ndarray) -> List[np.ndarray]:
"""Crop a set of bounding boxes from an image
Args:
----
img_path: path to the image
geoms: a array of polygons of shape (N, 4, 2) or of straight boxes of shape (N, 4)
Returns:
-------
a list of cropped images
"""
with Image.open(img_path) as pil_img:
img: np.ndarray = np.array(pil_img.convert("RGB"))
# Polygon
if geoms.ndim == 3 and geoms.shape[1:] == (4, 2):
return extract_rcrops(img, geoms.astype(dtype=int))
if geoms.ndim == 2 and geoms.shape[1] == 4:
return extract_crops(img, geoms.astype(dtype=int))
raise ValueError("Invalid geometry format")
def pre_transform_multiclass(img, target: Tuple[np.ndarray, List]) -> Tuple[np.ndarray, Dict[str, List]]:
"""Converts multiclass target to relative coordinates.
Args:
----
img: Image
target: tuple of target polygons and their classes names
Returns:
-------
Image and dictionary of boxes, with class names as keys
"""
boxes = convert_to_relative_coords(target[0], get_img_shape(img))
boxes_classes = target[1]
boxes_dict: Dict = {k: [] for k in sorted(set(boxes_classes))}
for k, poly in zip(boxes_classes, boxes):
boxes_dict[k].append(poly)
boxes_dict = {k: np.stack(v, axis=0) for k, v in boxes_dict.items()}
return img, boxes_dict