Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
from typing import Tuple | |
import numpy as np | |
import tensorflow as tf | |
from PIL import Image | |
from tensorflow.keras.utils import img_to_array | |
from doctr.utils.common_types import AbstractPath | |
__all__ = ["tensor_from_pil", "read_img_as_tensor", "decode_img_as_tensor", "tensor_from_numpy", "get_img_shape"] | |
def tensor_from_pil(pil_img: Image.Image, dtype: tf.dtypes.DType = tf.float32) -> tf.Tensor: | |
"""Convert a PIL Image to a TensorFlow tensor | |
Args: | |
---- | |
pil_img: a PIL image | |
dtype: the output tensor data type | |
Returns: | |
------- | |
decoded image as tensor | |
""" | |
npy_img = img_to_array(pil_img) | |
return tensor_from_numpy(npy_img, dtype) | |
def read_img_as_tensor(img_path: AbstractPath, dtype: tf.dtypes.DType = tf.float32) -> tf.Tensor: | |
"""Read an image file as a TensorFlow tensor | |
Args: | |
---- | |
img_path: location of the image file | |
dtype: the desired data type of the output tensor. If it is float-related, values will be divided by 255. | |
Returns: | |
------- | |
decoded image as a tensor | |
""" | |
if dtype not in (tf.uint8, tf.float16, tf.float32): | |
raise ValueError("insupported value for dtype") | |
img = tf.io.read_file(img_path) | |
img = tf.image.decode_jpeg(img, channels=3) | |
if dtype != tf.uint8: | |
img = tf.image.convert_image_dtype(img, dtype=dtype) | |
img = tf.clip_by_value(img, 0, 1) | |
return img | |
def decode_img_as_tensor(img_content: bytes, dtype: tf.dtypes.DType = tf.float32) -> tf.Tensor: | |
"""Read a byte stream as a TensorFlow tensor | |
Args: | |
---- | |
img_content: bytes of a decoded image | |
dtype: the desired data type of the output tensor. If it is float-related, values will be divided by 255. | |
Returns: | |
------- | |
decoded image as a tensor | |
""" | |
if dtype not in (tf.uint8, tf.float16, tf.float32): | |
raise ValueError("insupported value for dtype") | |
img = tf.io.decode_image(img_content, channels=3) | |
if dtype != tf.uint8: | |
img = tf.image.convert_image_dtype(img, dtype=dtype) | |
img = tf.clip_by_value(img, 0, 1) | |
return img | |
def tensor_from_numpy(npy_img: np.ndarray, dtype: tf.dtypes.DType = tf.float32) -> tf.Tensor: | |
"""Read an image file as a TensorFlow tensor | |
Args: | |
---- | |
npy_img: image encoded as a numpy array of shape (H, W, C) in np.uint8 | |
dtype: the desired data type of the output tensor. If it is float-related, values will be divided by 255. | |
Returns: | |
------- | |
same image as a tensor of shape (H, W, C) | |
""" | |
if dtype not in (tf.uint8, tf.float16, tf.float32): | |
raise ValueError("insupported value for dtype") | |
if dtype == tf.uint8: | |
img = tf.convert_to_tensor(npy_img, dtype=dtype) | |
else: | |
img = tf.image.convert_image_dtype(npy_img, dtype=dtype) | |
img = tf.clip_by_value(img, 0, 1) | |
return img | |
def get_img_shape(img: tf.Tensor) -> Tuple[int, int]: | |
"""Get the shape of an image""" | |
return img.shape[:2] | |