Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
from pathlib import Path | |
from typing import List, Sequence, Union | |
import numpy as np | |
from doctr.file_utils import requires_package | |
from doctr.utils.common_types import AbstractFile | |
from .html import read_html | |
from .image import read_img_as_numpy | |
from .pdf import read_pdf | |
__all__ = ["DocumentFile"] | |
class DocumentFile: | |
"""Read a document from multiple extensions""" | |
def from_pdf(cls, file: AbstractFile, **kwargs) -> List[np.ndarray]: | |
"""Read a PDF file | |
>>> from doctr.io import DocumentFile | |
>>> doc = DocumentFile.from_pdf("path/to/your/doc.pdf") | |
Args: | |
---- | |
file: the path to the PDF file or a binary stream | |
**kwargs: additional parameters to :meth:`pypdfium2.PdfPage.render` | |
Returns: | |
------- | |
the list of pages decoded as numpy ndarray of shape H x W x 3 | |
""" | |
return read_pdf(file, **kwargs) | |
def from_url(cls, url: str, **kwargs) -> List[np.ndarray]: | |
"""Interpret a web page as a PDF document | |
>>> from doctr.io import DocumentFile | |
>>> doc = DocumentFile.from_url("https://www.yoursite.com") | |
Args: | |
---- | |
url: the URL of the target web page | |
**kwargs: additional parameters to :meth:`pypdfium2.PdfPage.render` | |
Returns: | |
------- | |
the list of pages decoded as numpy ndarray of shape H x W x 3 | |
""" | |
requires_package( | |
"weasyprint", | |
"`.from_url` requires weasyprint installed.\n" | |
+ "Installation instructions: https://doc.courtbouillon.org/weasyprint/stable/first_steps.html#installation", | |
) | |
pdf_stream = read_html(url) | |
return cls.from_pdf(pdf_stream, **kwargs) | |
def from_images(cls, files: Union[Sequence[AbstractFile], AbstractFile], **kwargs) -> List[np.ndarray]: | |
"""Read an image file (or a collection of image files) and convert it into an image in numpy format | |
>>> from doctr.io import DocumentFile | |
>>> pages = DocumentFile.from_images(["path/to/your/page1.png", "path/to/your/page2.png"]) | |
Args: | |
---- | |
files: the path to the image file or a binary stream, or a collection of those | |
**kwargs: additional parameters to :meth:`doctr.io.image.read_img_as_numpy` | |
Returns: | |
------- | |
the list of pages decoded as numpy ndarray of shape H x W x 3 | |
""" | |
if isinstance(files, (str, Path, bytes)): | |
files = [files] | |
return [read_img_as_numpy(file, **kwargs) for file in files] | |