AutoEval / doctr /models /_utils.py
adirathor07's picture
added doctr folder
153628e
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from math import floor
from statistics import median_low
from typing import Any, Dict, List, Optional, Tuple, Union
import cv2
import numpy as np
from langdetect import LangDetectException, detect_langs
__all__ = ["estimate_orientation", "get_language", "invert_data_structure"]
def get_max_width_length_ratio(contour: np.ndarray) -> float:
"""Get the maximum shape ratio of a contour.
Args:
----
contour: the contour from cv2.findContour
Returns:
-------
the maximum shape ratio
"""
_, (w, h), _ = cv2.minAreaRect(contour)
return max(w / h, h / w)
def estimate_orientation(img: np.ndarray, n_ct: int = 50, ratio_threshold_for_lines: float = 5) -> int:
"""Estimate the angle of the general document orientation based on the
lines of the document and the assumption that they should be horizontal.
Args:
----
img: the img or bitmap to analyze (H, W, C)
n_ct: the number of contours used for the orientation estimation
ratio_threshold_for_lines: this is the ratio w/h used to discriminates lines
Returns:
-------
the angle of the general document orientation
"""
assert len(img.shape) == 3 and img.shape[-1] in [1, 3], f"Image shape {img.shape} not supported"
max_value = np.max(img)
min_value = np.min(img)
if max_value <= 1 and min_value >= 0 or (max_value <= 255 and min_value >= 0 and img.shape[-1] == 1):
thresh = img.astype(np.uint8)
if max_value <= 255 and min_value >= 0 and img.shape[-1] == 3:
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_img = cv2.medianBlur(gray_img, 5)
thresh = cv2.threshold(gray_img, thresh=0, maxval=255, type=cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] # type: ignore[assignment]
# try to merge words in lines
(h, w) = img.shape[:2]
k_x = max(1, (floor(w / 100)))
k_y = max(1, (floor(h / 100)))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (k_x, k_y))
thresh = cv2.dilate(thresh, kernel, iterations=1) # type: ignore[assignment]
# extract contours
contours, _ = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# Sort contours
contours = sorted(contours, key=get_max_width_length_ratio, reverse=True)
angles = []
for contour in contours[:n_ct]:
_, (w, h), angle = cv2.minAreaRect(contour)
if w / h > ratio_threshold_for_lines: # select only contours with ratio like lines
angles.append(angle)
elif w / h < 1 / ratio_threshold_for_lines: # if lines are vertical, substract 90 degree
angles.append(angle - 90)
if len(angles) == 0:
return 0 # in case no angles is found
else:
median = -median_low(angles)
return round(median) if abs(median) != 0 else 0
def rectify_crops(
crops: List[np.ndarray],
orientations: List[int],
) -> List[np.ndarray]:
"""Rotate each crop of the list according to the predicted orientation:
0: already straight, no rotation
1: 90 ccw, rotate 3 times ccw
2: 180, rotate 2 times ccw
3: 270 ccw, rotate 1 time ccw
"""
# Inverse predictions (if angle of +90 is detected, rotate by -90)
orientations = [4 - pred if pred != 0 else 0 for pred in orientations]
return (
[crop if orientation == 0 else np.rot90(crop, orientation) for orientation, crop in zip(orientations, crops)]
if len(orientations) > 0
else []
)
def rectify_loc_preds(
page_loc_preds: np.ndarray,
orientations: List[int],
) -> Optional[np.ndarray]:
"""Orient the quadrangle (Polygon4P) according to the predicted orientation,
so that the points are in this order: top L, top R, bot R, bot L if the crop is readable
"""
return (
np.stack(
[
np.roll(page_loc_pred, orientation, axis=0)
for orientation, page_loc_pred in zip(orientations, page_loc_preds)
],
axis=0,
)
if len(orientations) > 0
else None
)
def get_language(text: str) -> Tuple[str, float]:
"""Get languages of a text using langdetect model.
Get the language with the highest probability or no language if only a few words or a low probability
Args:
----
text (str): text
Returns:
-------
The detected language in ISO 639 code and confidence score
"""
try:
lang = detect_langs(text.lower())[0]
except LangDetectException:
return "unknown", 0.0
if len(text) <= 1 or (len(text) <= 5 and lang.prob <= 0.2):
return "unknown", 0.0
return lang.lang, lang.prob
def invert_data_structure(
x: Union[List[Dict[str, Any]], Dict[str, List[Any]]],
) -> Union[List[Dict[str, Any]], Dict[str, List[Any]]]:
"""Invert a List of Dict of elements to a Dict of list of elements and the other way around
Args:
----
x: a list of dictionaries with the same keys or a dictionary of lists of the same length
Returns:
-------
dictionary of list when x is a list of dictionaries or a list of dictionaries when x is dictionary of lists
"""
if isinstance(x, dict):
assert len({len(v) for v in x.values()}) == 1, "All the lists in the dictionnary should have the same length."
return [dict(zip(x, t)) for t in zip(*x.values())]
elif isinstance(x, list):
return {k: [dic[k] for dic in x] for k in x[0]}
else:
raise TypeError(f"Expected input to be either a dict or a list, got {type(input)} instead.")