AutoEval / doctr /models /builder.py
adirathor07's picture
added doctr folder
153628e
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
from scipy.cluster.hierarchy import fclusterdata
from doctr.io.elements import Block, Document, KIEDocument, KIEPage, Line, Page, Prediction, Word
from doctr.utils.geometry import estimate_page_angle, resolve_enclosing_bbox, resolve_enclosing_rbbox, rotate_boxes
from doctr.utils.repr import NestedObject
__all__ = ["DocumentBuilder"]
class DocumentBuilder(NestedObject):
"""Implements a document builder
Args:
----
resolve_lines: whether words should be automatically grouped into lines
resolve_blocks: whether lines should be automatically grouped into blocks
paragraph_break: relative length of the minimum space separating paragraphs
export_as_straight_boxes: if True, force straight boxes in the export (fit a rectangle
box to all rotated boxes). Else, keep the boxes format unchanged, no matter what it is.
"""
def __init__(
self,
resolve_lines: bool = True,
resolve_blocks: bool = True,
paragraph_break: float = 0.035,
export_as_straight_boxes: bool = False,
) -> None:
self.resolve_lines = resolve_lines
self.resolve_blocks = resolve_blocks
self.paragraph_break = paragraph_break
self.export_as_straight_boxes = export_as_straight_boxes
@staticmethod
def _sort_boxes(boxes: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Sort bounding boxes from top to bottom, left to right
Args:
----
boxes: bounding boxes of shape (N, 4) or (N, 4, 2) (in case of rotated bbox)
Returns:
-------
tuple: indices of ordered boxes of shape (N,), boxes
If straight boxes are passed tpo the function, boxes are unchanged
else: boxes returned are straight boxes fitted to the straightened rotated boxes
so that we fit the lines afterwards to the straigthened page
"""
if boxes.ndim == 3:
boxes = rotate_boxes(
loc_preds=boxes,
angle=-estimate_page_angle(boxes),
orig_shape=(1024, 1024),
min_angle=5.0,
)
boxes = np.concatenate((boxes.min(1), boxes.max(1)), -1)
return (boxes[:, 0] + 2 * boxes[:, 3] / np.median(boxes[:, 3] - boxes[:, 1])).argsort(), boxes
def _resolve_sub_lines(self, boxes: np.ndarray, word_idcs: List[int]) -> List[List[int]]:
"""Split a line in sub_lines
Args:
----
boxes: bounding boxes of shape (N, 4)
word_idcs: list of indexes for the words of the line
Returns:
-------
A list of (sub-)lines computed from the original line (words)
"""
lines = []
# Sort words horizontally
word_idcs = [word_idcs[idx] for idx in boxes[word_idcs, 0].argsort().tolist()]
# Eventually split line horizontally
if len(word_idcs) < 2:
lines.append(word_idcs)
else:
sub_line = [word_idcs[0]]
for i in word_idcs[1:]:
horiz_break = True
prev_box = boxes[sub_line[-1]]
# Compute distance between boxes
dist = boxes[i, 0] - prev_box[2]
# If distance between boxes is lower than paragraph break, same sub-line
if dist < self.paragraph_break:
horiz_break = False
if horiz_break:
lines.append(sub_line)
sub_line = []
sub_line.append(i)
lines.append(sub_line)
return lines
def _resolve_lines(self, boxes: np.ndarray) -> List[List[int]]:
"""Order boxes to group them in lines
Args:
----
boxes: bounding boxes of shape (N, 4) or (N, 4, 2) in case of rotated bbox
Returns:
-------
nested list of box indices
"""
# Sort boxes, and straighten the boxes if they are rotated
idxs, boxes = self._sort_boxes(boxes)
# Compute median for boxes heights
y_med = np.median(boxes[:, 3] - boxes[:, 1])
lines = []
words = [idxs[0]] # Assign the top-left word to the first line
# Define a mean y-center for the line
y_center_sum = boxes[idxs[0]][[1, 3]].mean()
for idx in idxs[1:]:
vert_break = True
# Compute y_dist
y_dist = abs(boxes[idx][[1, 3]].mean() - y_center_sum / len(words))
# If y-center of the box is close enough to mean y-center of the line, same line
if y_dist < y_med / 2:
vert_break = False
if vert_break:
# Compute sub-lines (horizontal split)
lines.extend(self._resolve_sub_lines(boxes, words))
words = []
y_center_sum = 0
words.append(idx)
y_center_sum += boxes[idx][[1, 3]].mean()
# Use the remaining words to form the last(s) line(s)
if len(words) > 0:
# Compute sub-lines (horizontal split)
lines.extend(self._resolve_sub_lines(boxes, words))
return lines
@staticmethod
def _resolve_blocks(boxes: np.ndarray, lines: List[List[int]]) -> List[List[List[int]]]:
"""Order lines to group them in blocks
Args:
----
boxes: bounding boxes of shape (N, 4) or (N, 4, 2)
lines: list of lines, each line is a list of idx
Returns:
-------
nested list of box indices
"""
# Resolve enclosing boxes of lines
if boxes.ndim == 3:
box_lines: np.ndarray = np.asarray([
resolve_enclosing_rbbox([tuple(boxes[idx, :, :]) for idx in line]) # type: ignore[misc]
for line in lines
])
else:
_box_lines = [
resolve_enclosing_bbox([(tuple(boxes[idx, :2]), tuple(boxes[idx, 2:])) for idx in line])
for line in lines
]
box_lines = np.asarray([(x1, y1, x2, y2) for ((x1, y1), (x2, y2)) in _box_lines])
# Compute geometrical features of lines to clusterize
# Clusterizing only with box centers yield to poor results for complex documents
if boxes.ndim == 3:
box_features: np.ndarray = np.stack(
(
(box_lines[:, 0, 0] + box_lines[:, 0, 1]) / 2,
(box_lines[:, 0, 0] + box_lines[:, 2, 0]) / 2,
(box_lines[:, 0, 0] + box_lines[:, 2, 1]) / 2,
(box_lines[:, 0, 1] + box_lines[:, 2, 1]) / 2,
(box_lines[:, 0, 1] + box_lines[:, 2, 0]) / 2,
(box_lines[:, 2, 0] + box_lines[:, 2, 1]) / 2,
),
axis=-1,
)
else:
box_features = np.stack(
(
(box_lines[:, 0] + box_lines[:, 3]) / 2,
(box_lines[:, 1] + box_lines[:, 2]) / 2,
(box_lines[:, 0] + box_lines[:, 2]) / 2,
(box_lines[:, 1] + box_lines[:, 3]) / 2,
box_lines[:, 0],
box_lines[:, 1],
),
axis=-1,
)
# Compute clusters
clusters = fclusterdata(box_features, t=0.1, depth=4, criterion="distance", metric="euclidean")
_blocks: Dict[int, List[int]] = {}
# Form clusters
for line_idx, cluster_idx in enumerate(clusters):
if cluster_idx in _blocks.keys():
_blocks[cluster_idx].append(line_idx)
else:
_blocks[cluster_idx] = [line_idx]
# Retrieve word-box level to return a fully nested structure
blocks = [[lines[idx] for idx in block] for block in _blocks.values()]
return blocks
def _build_blocks(
self,
boxes: np.ndarray,
word_preds: List[Tuple[str, float]],
crop_orientations: List[Dict[str, Any]],
) -> List[Block]:
"""Gather independent words in structured blocks
Args:
----
boxes: bounding boxes of all detected words of the page, of shape (N, 5) or (N, 4, 2)
word_preds: list of all detected words of the page, of shape N
crop_orientations: list of dictoinaries containing
the general orientation (orientations + confidences) of the crops
Returns:
-------
list of block elements
"""
if boxes.shape[0] != len(word_preds):
raise ValueError(f"Incompatible argument lengths: {boxes.shape[0]}, {len(word_preds)}")
if boxes.shape[0] == 0:
return []
# Decide whether we try to form lines
_boxes = boxes
if self.resolve_lines:
lines = self._resolve_lines(_boxes if _boxes.ndim == 3 else _boxes[:, :4])
# Decide whether we try to form blocks
if self.resolve_blocks and len(lines) > 1:
_blocks = self._resolve_blocks(_boxes if _boxes.ndim == 3 else _boxes[:, :4], lines)
else:
_blocks = [lines]
else:
# Sort bounding boxes, one line for all boxes, one block for the line
lines = [self._sort_boxes(_boxes if _boxes.ndim == 3 else _boxes[:, :4])[0]] # type: ignore[list-item]
_blocks = [lines]
blocks = [
Block([
Line([
Word(
*word_preds[idx],
tuple([tuple(pt) for pt in boxes[idx].tolist()]), # type: ignore[arg-type]
crop_orientations[idx],
)
if boxes.ndim == 3
else Word(
*word_preds[idx],
((boxes[idx, 0], boxes[idx, 1]), (boxes[idx, 2], boxes[idx, 3])),
crop_orientations[idx],
)
for idx in line
])
for line in lines
])
for lines in _blocks
]
return blocks
def extra_repr(self) -> str:
return (
f"resolve_lines={self.resolve_lines}, resolve_blocks={self.resolve_blocks}, "
f"paragraph_break={self.paragraph_break}, "
f"export_as_straight_boxes={self.export_as_straight_boxes}"
)
def __call__(
self,
pages: List[np.ndarray],
boxes: List[np.ndarray],
text_preds: List[List[Tuple[str, float]]],
page_shapes: List[Tuple[int, int]],
crop_orientations: List[Dict[str, Any]],
orientations: Optional[List[Dict[str, Any]]] = None,
languages: Optional[List[Dict[str, Any]]] = None,
) -> Document:
"""Re-arrange detected words into structured blocks
Args:
----
pages: list of N elements, where each element represents the page image
boxes: list of N elements, where each element represents the localization predictions, of shape (*, 5)
or (*, 6) for all words for a given page
text_preds: list of N elements, where each element is the list of all word prediction (text + confidence)
page_shapes: shape of each page, of size N
crop_orientations: list of N elements, where each element is
a dictionary containing the general orientation (orientations + confidences) of the crops
orientations: optional, list of N elements,
where each element is a dictionary containing the orientation (orientation + confidence)
languages: optional, list of N elements,
where each element is a dictionary containing the language (language + confidence)
Returns:
-------
document object
"""
if len(boxes) != len(text_preds) != len(crop_orientations) or len(boxes) != len(page_shapes) != len(
crop_orientations
):
raise ValueError("All arguments are expected to be lists of the same size")
_orientations = (
orientations if isinstance(orientations, list) else [None] * len(boxes) # type: ignore[list-item]
)
_languages = languages if isinstance(languages, list) else [None] * len(boxes) # type: ignore[list-item]
if self.export_as_straight_boxes and len(boxes) > 0:
# If boxes are already straight OK, else fit a bounding rect
if boxes[0].ndim == 3:
# Iterate over pages and boxes
boxes = [np.concatenate((p_boxes.min(1), p_boxes.max(1)), 1) for p_boxes in boxes]
_pages = [
Page(
page,
self._build_blocks(
page_boxes,
word_preds,
word_crop_orientations,
),
_idx,
shape,
orientation,
language,
)
for page, _idx, shape, page_boxes, word_preds, word_crop_orientations, orientation, language in zip(
pages, range(len(boxes)), page_shapes, boxes, text_preds, crop_orientations, _orientations, _languages
)
]
return Document(_pages)
class KIEDocumentBuilder(DocumentBuilder):
"""Implements a KIE document builder
Args:
----
resolve_lines: whether words should be automatically grouped into lines
resolve_blocks: whether lines should be automatically grouped into blocks
paragraph_break: relative length of the minimum space separating paragraphs
export_as_straight_boxes: if True, force straight boxes in the export (fit a rectangle
box to all rotated boxes). Else, keep the boxes format unchanged, no matter what it is.
"""
def __call__( # type: ignore[override]
self,
pages: List[np.ndarray],
boxes: List[Dict[str, np.ndarray]],
text_preds: List[Dict[str, List[Tuple[str, float]]]],
page_shapes: List[Tuple[int, int]],
crop_orientations: List[Dict[str, List[Dict[str, Any]]]],
orientations: Optional[List[Dict[str, Any]]] = None,
languages: Optional[List[Dict[str, Any]]] = None,
) -> KIEDocument:
"""Re-arrange detected words into structured predictions
Args:
----
pages: list of N elements, where each element represents the page image
boxes: list of N dictionaries, where each element represents the localization predictions for a class,
of shape (*, 5) or (*, 6) for all predictions
text_preds: list of N dictionaries, where each element is the list of all word prediction
page_shapes: shape of each page, of size N
crop_orientations: list of N dictonaries, where each element is
a list containing the general crop orientations (orientations + confidences) of the crops
orientations: optional, list of N elements,
where each element is a dictionary containing the orientation (orientation + confidence)
languages: optional, list of N elements,
where each element is a dictionary containing the language (language + confidence)
Returns:
-------
document object
"""
if len(boxes) != len(text_preds) != len(crop_orientations) or len(boxes) != len(page_shapes) != len(
crop_orientations
):
raise ValueError("All arguments are expected to be lists of the same size")
_orientations = (
orientations if isinstance(orientations, list) else [None] * len(boxes) # type: ignore[list-item]
)
_languages = languages if isinstance(languages, list) else [None] * len(boxes) # type: ignore[list-item]
if self.export_as_straight_boxes and len(boxes) > 0:
# If boxes are already straight OK, else fit a bounding rect
if next(iter(boxes[0].values())).ndim == 3:
straight_boxes: List[Dict[str, np.ndarray]] = []
# Iterate over pages
for p_boxes in boxes:
# Iterate over boxes of the pages
straight_boxes_dict = {}
for k, box in p_boxes.items():
straight_boxes_dict[k] = np.concatenate((box.min(1), box.max(1)), 1)
straight_boxes.append(straight_boxes_dict)
boxes = straight_boxes
_pages = [
KIEPage(
page,
{
k: self._build_blocks(
page_boxes[k],
word_preds[k],
word_crop_orientations[k],
)
for k in page_boxes.keys()
},
_idx,
shape,
orientation,
language,
)
for page, _idx, shape, page_boxes, word_preds, word_crop_orientations, orientation, language in zip(
pages, range(len(boxes)), page_shapes, boxes, text_preds, crop_orientations, _orientations, _languages
)
]
return KIEDocument(_pages)
def _build_blocks( # type: ignore[override]
self,
boxes: np.ndarray,
word_preds: List[Tuple[str, float]],
crop_orientations: List[Dict[str, Any]],
) -> List[Prediction]:
"""Gather independent words in structured blocks
Args:
----
boxes: bounding boxes of all detected words of the page, of shape (N, 5) or (N, 4, 2)
word_preds: list of all detected words of the page, of shape N
crop_orientations: list of orientations for each word crop
Returns:
-------
list of block elements
"""
if boxes.shape[0] != len(word_preds):
raise ValueError(f"Incompatible argument lengths: {boxes.shape[0]}, {len(word_preds)}")
if boxes.shape[0] == 0:
return []
# Decide whether we try to form lines
_boxes = boxes
idxs, _ = self._sort_boxes(_boxes if _boxes.ndim == 3 else _boxes[:, :4])
predictions = [
Prediction(
value=word_preds[idx][0],
confidence=word_preds[idx][1],
geometry=tuple([tuple(pt) for pt in boxes[idx].tolist()]), # type: ignore[arg-type]
crop_orientation=crop_orientations[idx],
)
if boxes.ndim == 3
else Prediction(
value=word_preds[idx][0],
confidence=word_preds[idx][1],
geometry=((boxes[idx, 0], boxes[idx, 1]), (boxes[idx, 2], boxes[idx, 3])),
crop_orientation=crop_orientations[idx],
)
for idx in idxs
]
return predictions