Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
from typing import Any, Callable, Dict, List, Optional | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torchvision.models import resnet34, resnet50 | |
from torchvision.models._utils import IntermediateLayerGetter | |
from torchvision.ops.deform_conv import DeformConv2d | |
from doctr.file_utils import CLASS_NAME | |
from ...classification import mobilenet_v3_large | |
from ...utils import _bf16_to_float32, load_pretrained_params | |
from .base import DBPostProcessor, _DBNet | |
__all__ = ["DBNet", "db_resnet50", "db_resnet34", "db_mobilenet_v3_large"] | |
default_cfgs: Dict[str, Dict[str, Any]] = { | |
"db_resnet50": { | |
"input_shape": (3, 1024, 1024), | |
"mean": (0.798, 0.785, 0.772), | |
"std": (0.264, 0.2749, 0.287), | |
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/db_resnet50-79bd7d70.pt&src=0", | |
}, | |
"db_resnet34": { | |
"input_shape": (3, 1024, 1024), | |
"mean": (0.798, 0.785, 0.772), | |
"std": (0.264, 0.2749, 0.287), | |
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/db_resnet34-cb6aed9e.pt&src=0", | |
}, | |
"db_mobilenet_v3_large": { | |
"input_shape": (3, 1024, 1024), | |
"mean": (0.798, 0.785, 0.772), | |
"std": (0.264, 0.2749, 0.287), | |
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/db_mobilenet_v3_large-81e9b152.pt&src=0", | |
}, | |
} | |
class FeaturePyramidNetwork(nn.Module): | |
def __init__( | |
self, | |
in_channels: List[int], | |
out_channels: int, | |
deform_conv: bool = False, | |
) -> None: | |
super().__init__() | |
out_chans = out_channels // len(in_channels) | |
conv_layer = DeformConv2d if deform_conv else nn.Conv2d | |
self.in_branches = nn.ModuleList([ | |
nn.Sequential( | |
conv_layer(chans, out_channels, 1, bias=False), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
) | |
for idx, chans in enumerate(in_channels) | |
]) | |
self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) | |
self.out_branches = nn.ModuleList([ | |
nn.Sequential( | |
conv_layer(out_channels, out_chans, 3, padding=1, bias=False), | |
nn.BatchNorm2d(out_chans), | |
nn.ReLU(inplace=True), | |
nn.Upsample(scale_factor=2**idx, mode="bilinear", align_corners=True), | |
) | |
for idx, chans in enumerate(in_channels) | |
]) | |
def forward(self, x: List[torch.Tensor]) -> torch.Tensor: | |
if len(x) != len(self.out_branches): | |
raise AssertionError | |
# Conv1x1 to get the same number of channels | |
_x: List[torch.Tensor] = [branch(t) for branch, t in zip(self.in_branches, x)] | |
out: List[torch.Tensor] = [_x[-1]] | |
for t in _x[:-1][::-1]: | |
out.append(self.upsample(out[-1]) + t) | |
# Conv and final upsampling | |
out = [branch(t) for branch, t in zip(self.out_branches, out[::-1])] | |
return torch.cat(out, dim=1) | |
class DBNet(_DBNet, nn.Module): | |
"""DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" | |
<https://arxiv.org/pdf/1911.08947.pdf>`_. | |
Args: | |
---- | |
feature extractor: the backbone serving as feature extractor | |
head_chans: the number of channels in the head | |
deform_conv: whether to use deformable convolution | |
bin_thresh: threshold for binarization | |
box_thresh: minimal objectness score to consider a box | |
assume_straight_pages: if True, fit straight bounding boxes only | |
exportable: onnx exportable returns only logits | |
cfg: the configuration dict of the model | |
class_names: list of class names | |
""" | |
def __init__( | |
self, | |
feat_extractor: IntermediateLayerGetter, | |
head_chans: int = 256, | |
deform_conv: bool = False, | |
bin_thresh: float = 0.3, | |
box_thresh: float = 0.1, | |
assume_straight_pages: bool = True, | |
exportable: bool = False, | |
cfg: Optional[Dict[str, Any]] = None, | |
class_names: List[str] = [CLASS_NAME], | |
) -> None: | |
super().__init__() | |
self.class_names = class_names | |
num_classes: int = len(self.class_names) | |
self.cfg = cfg | |
conv_layer = DeformConv2d if deform_conv else nn.Conv2d | |
self.exportable = exportable | |
self.assume_straight_pages = assume_straight_pages | |
self.feat_extractor = feat_extractor | |
# Identify the number of channels for the head initialization | |
_is_training = self.feat_extractor.training | |
self.feat_extractor = self.feat_extractor.eval() | |
with torch.no_grad(): | |
out = self.feat_extractor(torch.zeros((1, 3, 224, 224))) | |
fpn_channels = [v.shape[1] for _, v in out.items()] | |
if _is_training: | |
self.feat_extractor = self.feat_extractor.train() | |
self.fpn = FeaturePyramidNetwork(fpn_channels, head_chans, deform_conv) | |
# Conv1 map to channels | |
self.prob_head = nn.Sequential( | |
conv_layer(head_chans, head_chans // 4, 3, padding=1, bias=False), | |
nn.BatchNorm2d(head_chans // 4), | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(head_chans // 4, head_chans // 4, 2, stride=2, bias=False), | |
nn.BatchNorm2d(head_chans // 4), | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(head_chans // 4, num_classes, 2, stride=2), | |
) | |
self.thresh_head = nn.Sequential( | |
conv_layer(head_chans, head_chans // 4, 3, padding=1, bias=False), | |
nn.BatchNorm2d(head_chans // 4), | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(head_chans // 4, head_chans // 4, 2, stride=2, bias=False), | |
nn.BatchNorm2d(head_chans // 4), | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(head_chans // 4, num_classes, 2, stride=2), | |
) | |
self.postprocessor = DBPostProcessor( | |
assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh | |
) | |
for n, m in self.named_modules(): | |
# Don't override the initialization of the backbone | |
if n.startswith("feat_extractor."): | |
continue | |
if isinstance(m, (nn.Conv2d, DeformConv2d)): | |
nn.init.kaiming_normal_(m.weight.data, mode="fan_out", nonlinearity="relu") | |
if m.bias is not None: | |
m.bias.data.zero_() | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1.0) | |
m.bias.data.zero_() | |
def forward( | |
self, | |
x: torch.Tensor, | |
target: Optional[List[np.ndarray]] = None, | |
return_model_output: bool = False, | |
return_preds: bool = False, | |
) -> Dict[str, torch.Tensor]: | |
# Extract feature maps at different stages | |
feats = self.feat_extractor(x) | |
feats = [feats[str(idx)] for idx in range(len(feats))] | |
# Pass through the FPN | |
feat_concat = self.fpn(feats) | |
logits = self.prob_head(feat_concat) | |
out: Dict[str, Any] = {} | |
if self.exportable: | |
out["logits"] = logits | |
return out | |
if return_model_output or target is None or return_preds: | |
prob_map = _bf16_to_float32(torch.sigmoid(logits)) | |
if return_model_output: | |
out["out_map"] = prob_map | |
if target is None or return_preds: | |
# Post-process boxes (keep only text predictions) | |
out["preds"] = [ | |
dict(zip(self.class_names, preds)) | |
for preds in self.postprocessor(prob_map.detach().cpu().permute((0, 2, 3, 1)).numpy()) | |
] | |
if target is not None: | |
thresh_map = self.thresh_head(feat_concat) | |
loss = self.compute_loss(logits, thresh_map, target) | |
out["loss"] = loss | |
return out | |
def compute_loss( | |
self, | |
out_map: torch.Tensor, | |
thresh_map: torch.Tensor, | |
target: List[np.ndarray], | |
gamma: float = 2.0, | |
alpha: float = 0.5, | |
eps: float = 1e-8, | |
) -> torch.Tensor: | |
"""Compute a batch of gts, masks, thresh_gts, thresh_masks from a list of boxes | |
and a list of masks for each image. From there it computes the loss with the model output | |
Args: | |
---- | |
out_map: output feature map of the model of shape (N, C, H, W) | |
thresh_map: threshold map of shape (N, C, H, W) | |
target: list of dictionary where each dict has a `boxes` and a `flags` entry | |
gamma: modulating factor in the focal loss formula | |
alpha: balancing factor in the focal loss formula | |
eps: epsilon factor in dice loss | |
Returns: | |
------- | |
A loss tensor | |
""" | |
if gamma < 0: | |
raise ValueError("Value of gamma should be greater than or equal to zero.") | |
prob_map = torch.sigmoid(out_map) | |
thresh_map = torch.sigmoid(thresh_map) | |
targets = self.build_target(target, out_map.shape[1:], False) # type: ignore[arg-type] | |
seg_target, seg_mask = torch.from_numpy(targets[0]), torch.from_numpy(targets[1]) | |
seg_target, seg_mask = seg_target.to(out_map.device), seg_mask.to(out_map.device) | |
thresh_target, thresh_mask = torch.from_numpy(targets[2]), torch.from_numpy(targets[3]) | |
thresh_target, thresh_mask = thresh_target.to(out_map.device), thresh_mask.to(out_map.device) | |
if torch.any(seg_mask): | |
# Focal loss | |
focal_scale = 10.0 | |
bce_loss = F.binary_cross_entropy_with_logits(out_map, seg_target, reduction="none") | |
p_t = prob_map * seg_target + (1 - prob_map) * (1 - seg_target) | |
alpha_t = alpha * seg_target + (1 - alpha) * (1 - seg_target) | |
# Unreduced version | |
focal_loss = alpha_t * (1 - p_t) ** gamma * bce_loss | |
# Class reduced | |
focal_loss = (seg_mask * focal_loss).sum((0, 1, 2, 3)) / seg_mask.sum((0, 1, 2, 3)) | |
# Compute dice loss for each class or for approx binary_map | |
if len(self.class_names) > 1: | |
dice_map = torch.softmax(out_map, dim=1) | |
else: | |
# compute binary map instead | |
dice_map = 1 / (1 + torch.exp(-50.0 * (prob_map - thresh_map))) | |
# Class reduced | |
inter = (seg_mask * dice_map * seg_target).sum((0, 2, 3)) | |
cardinality = (seg_mask * (dice_map + seg_target)).sum((0, 2, 3)) | |
dice_loss = (1 - 2 * inter / (cardinality + eps)).mean() | |
# Compute l1 loss for thresh_map | |
if torch.any(thresh_mask): | |
l1_loss = (torch.abs(thresh_map - thresh_target) * thresh_mask).sum() / (thresh_mask.sum() + eps) | |
return l1_loss + focal_scale * focal_loss + dice_loss | |
def _dbnet( | |
arch: str, | |
pretrained: bool, | |
backbone_fn: Callable[[bool], nn.Module], | |
fpn_layers: List[str], | |
backbone_submodule: Optional[str] = None, | |
pretrained_backbone: bool = True, | |
ignore_keys: Optional[List[str]] = None, | |
**kwargs: Any, | |
) -> DBNet: | |
pretrained_backbone = pretrained_backbone and not pretrained | |
# Feature extractor | |
backbone = ( | |
backbone_fn(pretrained_backbone) | |
if not arch.split("_")[1].startswith("resnet") | |
# Starting with Imagenet pretrained params introduces some NaNs in layer3 & layer4 of resnet50 | |
else backbone_fn(weights=None) # type: ignore[call-arg] | |
) | |
if isinstance(backbone_submodule, str): | |
backbone = getattr(backbone, backbone_submodule) | |
feat_extractor = IntermediateLayerGetter( | |
backbone, | |
{layer_name: str(idx) for idx, layer_name in enumerate(fpn_layers)}, | |
) | |
if not kwargs.get("class_names", None): | |
kwargs["class_names"] = default_cfgs[arch].get("class_names", [CLASS_NAME]) | |
else: | |
kwargs["class_names"] = sorted(kwargs["class_names"]) | |
# Build the model | |
model = DBNet(feat_extractor, cfg=default_cfgs[arch], **kwargs) | |
# Load pretrained parameters | |
if pretrained: | |
# The number of class_names is not the same as the number of classes in the pretrained model => | |
# remove the layer weights | |
_ignore_keys = ( | |
ignore_keys if kwargs["class_names"] != default_cfgs[arch].get("class_names", [CLASS_NAME]) else None | |
) | |
load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys) | |
return model | |
def db_resnet34(pretrained: bool = False, **kwargs: Any) -> DBNet: | |
"""DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" | |
<https://arxiv.org/pdf/1911.08947.pdf>`_, using a ResNet-34 backbone. | |
>>> import torch | |
>>> from doctr.models import db_resnet34 | |
>>> model = db_resnet34(pretrained=True) | |
>>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained (bool): If True, returns a model pre-trained on our text detection dataset | |
**kwargs: keyword arguments of the DBNet architecture | |
Returns: | |
------- | |
text detection architecture | |
""" | |
return _dbnet( | |
"db_resnet34", | |
pretrained, | |
resnet34, | |
["layer1", "layer2", "layer3", "layer4"], | |
None, | |
ignore_keys=[ | |
"prob_head.6.weight", | |
"prob_head.6.bias", | |
"thresh_head.6.weight", | |
"thresh_head.6.bias", | |
], | |
**kwargs, | |
) | |
def db_resnet50(pretrained: bool = False, **kwargs: Any) -> DBNet: | |
"""DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" | |
<https://arxiv.org/pdf/1911.08947.pdf>`_, using a ResNet-50 backbone. | |
>>> import torch | |
>>> from doctr.models import db_resnet50 | |
>>> model = db_resnet50(pretrained=True) | |
>>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained (bool): If True, returns a model pre-trained on our text detection dataset | |
**kwargs: keyword arguments of the DBNet architecture | |
Returns: | |
------- | |
text detection architecture | |
""" | |
return _dbnet( | |
"db_resnet50", | |
pretrained, | |
resnet50, | |
["layer1", "layer2", "layer3", "layer4"], | |
None, | |
ignore_keys=[ | |
"prob_head.6.weight", | |
"prob_head.6.bias", | |
"thresh_head.6.weight", | |
"thresh_head.6.bias", | |
], | |
**kwargs, | |
) | |
def db_mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) -> DBNet: | |
"""DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" | |
<https://arxiv.org/pdf/1911.08947.pdf>`_, using a MobileNet V3 Large backbone. | |
>>> import torch | |
>>> from doctr.models import db_mobilenet_v3_large | |
>>> model = db_mobilenet_v3_large(pretrained=True) | |
>>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained (bool): If True, returns a model pre-trained on our text detection dataset | |
**kwargs: keyword arguments of the DBNet architecture | |
Returns: | |
------- | |
text detection architecture | |
""" | |
return _dbnet( | |
"db_mobilenet_v3_large", | |
pretrained, | |
mobilenet_v3_large, | |
["3", "6", "12", "16"], | |
"features", | |
ignore_keys=[ | |
"prob_head.6.weight", | |
"prob_head.6.bias", | |
"thresh_head.6.weight", | |
"thresh_head.6.bias", | |
], | |
**kwargs, | |
) | |