adirathor07's picture
added doctr folder
153628e
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
# Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Model, Sequential, layers
from doctr.file_utils import CLASS_NAME
from doctr.models.classification import resnet18, resnet34, resnet50
from doctr.models.utils import IntermediateLayerGetter, _bf16_to_float32, conv_sequence, load_pretrained_params
from doctr.utils.repr import NestedObject
from .base import LinkNetPostProcessor, _LinkNet
__all__ = ["LinkNet", "linknet_resnet18", "linknet_resnet34", "linknet_resnet50"]
default_cfgs: Dict[str, Dict[str, Any]] = {
"linknet_resnet18": {
"mean": (0.798, 0.785, 0.772),
"std": (0.264, 0.2749, 0.287),
"input_shape": (1024, 1024, 3),
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/linknet_resnet18-b9ee56e6.zip&src=0",
},
"linknet_resnet34": {
"mean": (0.798, 0.785, 0.772),
"std": (0.264, 0.2749, 0.287),
"input_shape": (1024, 1024, 3),
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/linknet_resnet34-51909c56.zip&src=0",
},
"linknet_resnet50": {
"mean": (0.798, 0.785, 0.772),
"std": (0.264, 0.2749, 0.287),
"input_shape": (1024, 1024, 3),
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/linknet_resnet50-ac9f3829.zip&src=0",
},
}
def decoder_block(in_chan: int, out_chan: int, stride: int, **kwargs: Any) -> Sequential:
"""Creates a LinkNet decoder block"""
return Sequential([
*conv_sequence(in_chan // 4, "relu", True, kernel_size=1, **kwargs),
layers.Conv2DTranspose(
filters=in_chan // 4,
kernel_size=3,
strides=stride,
padding="same",
use_bias=False,
kernel_initializer="he_normal",
),
layers.BatchNormalization(),
layers.Activation("relu"),
*conv_sequence(out_chan, "relu", True, kernel_size=1),
])
class LinkNetFPN(Model, NestedObject):
"""LinkNet Decoder module"""
def __init__(
self,
out_chans: int,
in_shapes: List[Tuple[int, ...]],
) -> None:
super().__init__()
self.out_chans = out_chans
strides = [2] * (len(in_shapes) - 1) + [1]
i_chans = [s[-1] for s in in_shapes[::-1]]
o_chans = i_chans[1:] + [out_chans]
self.decoders = [
decoder_block(in_chan, out_chan, s, input_shape=in_shape)
for in_chan, out_chan, s, in_shape in zip(i_chans, o_chans, strides, in_shapes[::-1])
]
def call(self, x: List[tf.Tensor]) -> tf.Tensor:
out = 0
for decoder, fmap in zip(self.decoders, x[::-1]):
out = decoder(out + fmap)
return out
def extra_repr(self) -> str:
return f"out_chans={self.out_chans}"
class LinkNet(_LinkNet, keras.Model):
"""LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
<https://arxiv.org/pdf/1707.03718.pdf>`_.
Args:
----
feature extractor: the backbone serving as feature extractor
fpn_channels: number of channels each extracted feature maps is mapped to
bin_thresh: threshold for binarization of the output feature map
box_thresh: minimal objectness score to consider a box
assume_straight_pages: if True, fit straight bounding boxes only
exportable: onnx exportable returns only logits
cfg: the configuration dict of the model
class_names: list of class names
"""
_children_names: List[str] = ["feat_extractor", "fpn", "classifier", "postprocessor"]
def __init__(
self,
feat_extractor: IntermediateLayerGetter,
fpn_channels: int = 64,
bin_thresh: float = 0.1,
box_thresh: float = 0.1,
assume_straight_pages: bool = True,
exportable: bool = False,
cfg: Optional[Dict[str, Any]] = None,
class_names: List[str] = [CLASS_NAME],
) -> None:
super().__init__(cfg=cfg)
self.class_names = class_names
num_classes: int = len(self.class_names)
self.exportable = exportable
self.assume_straight_pages = assume_straight_pages
self.feat_extractor = feat_extractor
self.fpn = LinkNetFPN(fpn_channels, [_shape[1:] for _shape in self.feat_extractor.output_shape])
self.fpn.build(self.feat_extractor.output_shape)
self.classifier = Sequential([
layers.Conv2DTranspose(
filters=32,
kernel_size=3,
strides=2,
padding="same",
use_bias=False,
kernel_initializer="he_normal",
input_shape=self.fpn.decoders[-1].output_shape[1:],
),
layers.BatchNormalization(),
layers.Activation("relu"),
*conv_sequence(32, "relu", True, kernel_size=3, strides=1),
layers.Conv2DTranspose(
filters=num_classes,
kernel_size=2,
strides=2,
padding="same",
use_bias=True,
kernel_initializer="he_normal",
),
])
self.postprocessor = LinkNetPostProcessor(
assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh
)
def compute_loss(
self,
out_map: tf.Tensor,
target: List[Dict[str, np.ndarray]],
gamma: float = 2.0,
alpha: float = 0.5,
eps: float = 1e-8,
) -> tf.Tensor:
"""Compute linknet loss, BCE with boosted box edges or focal loss. Focal loss implementation based on
<https://github.com/tensorflow/addons/>`_.
Args:
----
out_map: output feature map of the model of shape N x H x W x 1
target: list of dictionary where each dict has a `boxes` and a `flags` entry
gamma: modulating factor in the focal loss formula
alpha: balancing factor in the focal loss formula
eps: epsilon factor in dice loss
Returns:
-------
A loss tensor
"""
seg_target, seg_mask = self.build_target(target, out_map.shape[1:], True)
seg_target = tf.convert_to_tensor(seg_target, dtype=out_map.dtype)
seg_mask = tf.convert_to_tensor(seg_mask, dtype=tf.bool)
seg_mask = tf.cast(seg_mask, tf.float32)
bce_loss = tf.keras.losses.binary_crossentropy(seg_target[..., None], out_map[..., None], from_logits=True)
proba_map = tf.sigmoid(out_map)
# Focal loss
if gamma < 0:
raise ValueError("Value of gamma should be greater than or equal to zero.")
# Convert logits to prob, compute gamma factor
p_t = (seg_target * proba_map) + ((1 - seg_target) * (1 - proba_map))
alpha_t = seg_target * alpha + (1 - seg_target) * (1 - alpha)
# Unreduced loss
focal_loss = alpha_t * (1 - p_t) ** gamma * bce_loss
# Class reduced
focal_loss = tf.reduce_sum(seg_mask * focal_loss, (0, 1, 2, 3)) / tf.reduce_sum(seg_mask, (0, 1, 2, 3))
# Compute dice loss for each class
dice_map = tf.nn.softmax(out_map, axis=-1) if len(self.class_names) > 1 else proba_map
# Class-reduced dice loss
inter = tf.reduce_sum(seg_mask * dice_map * seg_target, axis=[0, 1, 2])
cardinality = tf.reduce_sum(seg_mask * (dice_map + seg_target), axis=[0, 1, 2])
dice_loss = tf.reduce_mean(1 - 2 * inter / (cardinality + eps))
return focal_loss + dice_loss
def call(
self,
x: tf.Tensor,
target: Optional[List[Dict[str, np.ndarray]]] = None,
return_model_output: bool = False,
return_preds: bool = False,
**kwargs: Any,
) -> Dict[str, Any]:
feat_maps = self.feat_extractor(x, **kwargs)
logits = self.fpn(feat_maps, **kwargs)
logits = self.classifier(logits, **kwargs)
out: Dict[str, tf.Tensor] = {}
if self.exportable:
out["logits"] = logits
return out
if return_model_output or target is None or return_preds:
prob_map = _bf16_to_float32(tf.math.sigmoid(logits))
if return_model_output:
out["out_map"] = prob_map
if target is None or return_preds:
# Post-process boxes
out["preds"] = [dict(zip(self.class_names, preds)) for preds in self.postprocessor(prob_map.numpy())]
if target is not None:
loss = self.compute_loss(logits, target)
out["loss"] = loss
return out
def _linknet(
arch: str,
pretrained: bool,
backbone_fn,
fpn_layers: List[str],
pretrained_backbone: bool = True,
input_shape: Optional[Tuple[int, int, int]] = None,
**kwargs: Any,
) -> LinkNet:
pretrained_backbone = pretrained_backbone and not pretrained
# Patch the config
_cfg = deepcopy(default_cfgs[arch])
_cfg["input_shape"] = input_shape or default_cfgs[arch]["input_shape"]
if not kwargs.get("class_names", None):
kwargs["class_names"] = _cfg.get("class_names", [CLASS_NAME])
else:
kwargs["class_names"] = sorted(kwargs["class_names"])
# Feature extractor
feat_extractor = IntermediateLayerGetter(
backbone_fn(
pretrained=pretrained_backbone,
include_top=False,
input_shape=_cfg["input_shape"],
),
fpn_layers,
)
# Build the model
model = LinkNet(feat_extractor, cfg=_cfg, **kwargs)
# Load pretrained parameters
if pretrained:
load_pretrained_params(model, _cfg["url"])
return model
def linknet_resnet18(pretrained: bool = False, **kwargs: Any) -> LinkNet:
"""LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
<https://arxiv.org/pdf/1707.03718.pdf>`_.
>>> import tensorflow as tf
>>> from doctr.models import linknet_resnet18
>>> model = linknet_resnet18(pretrained=True)
>>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text detection dataset
**kwargs: keyword arguments of the LinkNet architecture
Returns:
-------
text detection architecture
"""
return _linknet(
"linknet_resnet18",
pretrained,
resnet18,
["resnet_block_1", "resnet_block_3", "resnet_block_5", "resnet_block_7"],
**kwargs,
)
def linknet_resnet34(pretrained: bool = False, **kwargs: Any) -> LinkNet:
"""LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
<https://arxiv.org/pdf/1707.03718.pdf>`_.
>>> import tensorflow as tf
>>> from doctr.models import linknet_resnet34
>>> model = linknet_resnet34(pretrained=True)
>>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text detection dataset
**kwargs: keyword arguments of the LinkNet architecture
Returns:
-------
text detection architecture
"""
return _linknet(
"linknet_resnet34",
pretrained,
resnet34,
["resnet_block_2", "resnet_block_6", "resnet_block_12", "resnet_block_15"],
**kwargs,
)
def linknet_resnet50(pretrained: bool = False, **kwargs: Any) -> LinkNet:
"""LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
<https://arxiv.org/pdf/1707.03718.pdf>`_.
>>> import tensorflow as tf
>>> from doctr.models import linknet_resnet50
>>> model = linknet_resnet50(pretrained=True)
>>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text detection dataset
**kwargs: keyword arguments of the LinkNet architecture
Returns:
-------
text detection architecture
"""
return _linknet(
"linknet_resnet50",
pretrained,
resnet50,
["conv2_block3_out", "conv3_block4_out", "conv4_block6_out", "conv5_block3_out"],
**kwargs,
)