adirathor07's picture
added doctr folder
153628e
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from typing import Any, Dict, List, Tuple, Union
import numpy as np
import torch
from torch import nn
from doctr.models.preprocessor import PreProcessor
from doctr.models.utils import set_device_and_dtype
__all__ = ["DetectionPredictor"]
class DetectionPredictor(nn.Module):
"""Implements an object able to localize text elements in a document
Args:
----
pre_processor: transform inputs for easier batched model inference
model: core detection architecture
"""
def __init__(
self,
pre_processor: PreProcessor,
model: nn.Module,
) -> None:
super().__init__()
self.pre_processor = pre_processor
self.model = model.eval()
@torch.inference_mode()
def forward(
self,
pages: List[Union[np.ndarray, torch.Tensor]],
return_maps: bool = False,
**kwargs: Any,
) -> Union[List[Dict[str, np.ndarray]], Tuple[List[Dict[str, np.ndarray]], List[np.ndarray]]]:
# Dimension check
if any(page.ndim != 3 for page in pages):
raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.")
processed_batches = self.pre_processor(pages)
_params = next(self.model.parameters())
self.model, processed_batches = set_device_and_dtype(
self.model, processed_batches, _params.device, _params.dtype
)
predicted_batches = [
self.model(batch, return_preds=True, return_model_output=True, **kwargs) for batch in processed_batches
]
preds = [pred for batch in predicted_batches for pred in batch["preds"]]
if return_maps:
seg_maps = [
pred.permute(1, 2, 0).detach().cpu().numpy() for batch in predicted_batches for pred in batch["out_map"]
]
return preds, seg_maps
return preds