Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
from typing import Any, Dict, List, Tuple, Union | |
import numpy as np | |
import torch | |
from torch import nn | |
from doctr.models.preprocessor import PreProcessor | |
from doctr.models.utils import set_device_and_dtype | |
__all__ = ["DetectionPredictor"] | |
class DetectionPredictor(nn.Module): | |
"""Implements an object able to localize text elements in a document | |
Args: | |
---- | |
pre_processor: transform inputs for easier batched model inference | |
model: core detection architecture | |
""" | |
def __init__( | |
self, | |
pre_processor: PreProcessor, | |
model: nn.Module, | |
) -> None: | |
super().__init__() | |
self.pre_processor = pre_processor | |
self.model = model.eval() | |
def forward( | |
self, | |
pages: List[Union[np.ndarray, torch.Tensor]], | |
return_maps: bool = False, | |
**kwargs: Any, | |
) -> Union[List[Dict[str, np.ndarray]], Tuple[List[Dict[str, np.ndarray]], List[np.ndarray]]]: | |
# Dimension check | |
if any(page.ndim != 3 for page in pages): | |
raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.") | |
processed_batches = self.pre_processor(pages) | |
_params = next(self.model.parameters()) | |
self.model, processed_batches = set_device_and_dtype( | |
self.model, processed_batches, _params.device, _params.dtype | |
) | |
predicted_batches = [ | |
self.model(batch, return_preds=True, return_model_output=True, **kwargs) for batch in processed_batches | |
] | |
preds = [pred for batch in predicted_batches for pred in batch["preds"]] | |
if return_maps: | |
seg_maps = [ | |
pred.permute(1, 2, 0).detach().cpu().numpy() for batch in predicted_batches for pred in batch["out_map"] | |
] | |
return preds, seg_maps | |
return preds | |