Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import math | |
from typing import Any, Tuple | |
import tensorflow as tf | |
from tensorflow.keras import layers | |
from doctr.utils.repr import NestedObject | |
__all__ = ["PatchEmbedding"] | |
class PatchEmbedding(layers.Layer, NestedObject): | |
"""Compute 2D patch embeddings with cls token and positional encoding""" | |
def __init__(self, input_shape: Tuple[int, int, int], embed_dim: int, patch_size: Tuple[int, int]) -> None: | |
super().__init__() | |
height, width, _ = input_shape | |
self.patch_size = patch_size | |
self.interpolate = True if patch_size[0] == patch_size[1] else False | |
self.grid_size = tuple([s // p for s, p in zip((height, width), self.patch_size)]) | |
self.num_patches = self.grid_size[0] * self.grid_size[1] | |
self.cls_token = self.add_weight(shape=(1, 1, embed_dim), initializer="zeros", trainable=True, name="cls_token") | |
self.positions = self.add_weight( | |
shape=(1, self.num_patches + 1, embed_dim), | |
initializer="zeros", | |
trainable=True, | |
name="positions", | |
) | |
self.projection = layers.Conv2D( | |
filters=embed_dim, | |
kernel_size=self.patch_size, | |
strides=self.patch_size, | |
padding="valid", | |
data_format="channels_last", | |
use_bias=True, | |
kernel_initializer="glorot_uniform", | |
bias_initializer="zeros", | |
name="projection", | |
) | |
def interpolate_pos_encoding(self, embeddings: tf.Tensor, height: int, width: int) -> tf.Tensor: | |
"""100 % borrowed from: | |
https://github.com/huggingface/transformers/blob/main/src/transformers/models/vit/modeling_tf_vit.py | |
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher | |
resolution images. | |
Source: | |
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py | |
""" | |
seq_len, dim = embeddings.shape[1:] | |
num_patches = seq_len - 1 | |
num_positions = self.positions.shape[1] - 1 | |
if num_patches == num_positions and height == width: | |
return self.positions | |
class_pos_embed = self.positions[:, :1] | |
patch_pos_embed = self.positions[:, 1:] | |
h0 = height // self.patch_size[0] | |
w0 = width // self.patch_size[1] | |
patch_pos_embed = tf.image.resize( | |
images=tf.reshape( | |
patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) | |
), | |
size=(h0, w0), | |
method="bilinear", | |
) | |
shape = patch_pos_embed.shape | |
assert h0 == shape[-3], "height of interpolated patch embedding doesn't match" | |
assert w0 == shape[-2], "width of interpolated patch embedding doesn't match" | |
patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim)) | |
return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1) | |
def call(self, x: tf.Tensor, **kwargs: Any) -> tf.Tensor: | |
B, H, W, C = x.shape | |
assert H % self.patch_size[0] == 0, "Image height must be divisible by patch height" | |
assert W % self.patch_size[1] == 0, "Image width must be divisible by patch width" | |
# patchify image | |
patches = self.projection(x, **kwargs) # (batch_size, num_patches, d_model) | |
patches = tf.reshape(patches, (B, self.num_patches, -1)) # (batch_size, num_patches, d_model) | |
cls_tokens = tf.repeat(self.cls_token, B, axis=0) # (batch_size, 1, d_model) | |
# concate cls_tokens to patches | |
embeddings = tf.concat([cls_tokens, patches], axis=1) # (batch_size, num_patches + 1, d_model) | |
# add positions to embeddings | |
if self.interpolate: | |
embeddings += self.interpolate_pos_encoding(embeddings, H, W) | |
else: | |
embeddings += self.positions | |
return embeddings # (batch_size, num_patches + 1, d_model) | |