Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
from typing import Any | |
from .detection.zoo import detection_predictor | |
from .kie_predictor import KIEPredictor | |
from .predictor import OCRPredictor | |
from .recognition.zoo import recognition_predictor | |
__all__ = ["ocr_predictor", "kie_predictor"] | |
def _predictor( | |
det_arch: Any, | |
reco_arch: Any, | |
pretrained: bool, | |
pretrained_backbone: bool = True, | |
assume_straight_pages: bool = True, | |
preserve_aspect_ratio: bool = True, | |
symmetric_pad: bool = True, | |
det_bs: int = 2, | |
reco_bs: int = 128, | |
detect_orientation: bool = False, | |
straighten_pages: bool = False, | |
detect_language: bool = False, | |
**kwargs, | |
) -> OCRPredictor: | |
# Detection | |
det_predictor = detection_predictor( | |
det_arch, | |
pretrained=pretrained, | |
pretrained_backbone=pretrained_backbone, | |
batch_size=det_bs, | |
assume_straight_pages=assume_straight_pages, | |
preserve_aspect_ratio=preserve_aspect_ratio, | |
symmetric_pad=symmetric_pad, | |
) | |
# Recognition | |
reco_predictor = recognition_predictor( | |
reco_arch, | |
pretrained=pretrained, | |
pretrained_backbone=pretrained_backbone, | |
batch_size=reco_bs, | |
) | |
return OCRPredictor( | |
det_predictor, | |
reco_predictor, | |
assume_straight_pages=assume_straight_pages, | |
preserve_aspect_ratio=preserve_aspect_ratio, | |
symmetric_pad=symmetric_pad, | |
detect_orientation=detect_orientation, | |
straighten_pages=straighten_pages, | |
detect_language=detect_language, | |
**kwargs, | |
) | |
def ocr_predictor( | |
det_arch: Any = "fast_base", | |
reco_arch: Any = "crnn_vgg16_bn", | |
pretrained: bool = False, | |
pretrained_backbone: bool = True, | |
assume_straight_pages: bool = True, | |
preserve_aspect_ratio: bool = True, | |
symmetric_pad: bool = True, | |
export_as_straight_boxes: bool = False, | |
detect_orientation: bool = False, | |
straighten_pages: bool = False, | |
detect_language: bool = False, | |
**kwargs: Any, | |
) -> OCRPredictor: | |
"""End-to-end OCR architecture using one model for localization, and another for text recognition. | |
>>> import numpy as np | |
>>> from doctr.models import ocr_predictor | |
>>> model = ocr_predictor('db_resnet50', 'crnn_vgg16_bn', pretrained=True) | |
>>> input_page = (255 * np.random.rand(600, 800, 3)).astype(np.uint8) | |
>>> out = model([input_page]) | |
Args: | |
---- | |
det_arch: name of the detection architecture or the model itself to use | |
(e.g. 'db_resnet50', 'db_mobilenet_v3_large') | |
reco_arch: name of the recognition architecture or the model itself to use | |
(e.g. 'crnn_vgg16_bn', 'sar_resnet31') | |
pretrained: If True, returns a model pre-trained on our OCR dataset | |
pretrained_backbone: If True, returns a model with a pretrained backbone | |
assume_straight_pages: if True, speeds up the inference by assuming you only pass straight pages | |
without rotated textual elements. | |
preserve_aspect_ratio: If True, pad the input document image to preserve the aspect ratio before | |
running the detection model on it. | |
symmetric_pad: if True, pad the image symmetrically instead of padding at the bottom-right. | |
export_as_straight_boxes: when assume_straight_pages is set to False, export final predictions | |
(potentially rotated) as straight bounding boxes. | |
detect_orientation: if True, the estimated general page orientation will be added to the predictions for each | |
page. Doing so will slightly deteriorate the overall latency. | |
straighten_pages: if True, estimates the page general orientation | |
based on the segmentation map median line orientation. | |
Then, rotates page before passing it again to the deep learning detection module. | |
Doing so will improve performances for documents with page-uniform rotations. | |
detect_language: if True, the language prediction will be added to the predictions for each | |
page. Doing so will slightly deteriorate the overall latency. | |
kwargs: keyword args of `OCRPredictor` | |
Returns: | |
------- | |
OCR predictor | |
""" | |
return _predictor( | |
det_arch, | |
reco_arch, | |
pretrained, | |
pretrained_backbone=pretrained_backbone, | |
assume_straight_pages=assume_straight_pages, | |
preserve_aspect_ratio=preserve_aspect_ratio, | |
symmetric_pad=symmetric_pad, | |
export_as_straight_boxes=export_as_straight_boxes, | |
detect_orientation=detect_orientation, | |
straighten_pages=straighten_pages, | |
detect_language=detect_language, | |
**kwargs, | |
) | |
def _kie_predictor( | |
det_arch: Any, | |
reco_arch: Any, | |
pretrained: bool, | |
pretrained_backbone: bool = True, | |
assume_straight_pages: bool = True, | |
preserve_aspect_ratio: bool = True, | |
symmetric_pad: bool = True, | |
det_bs: int = 2, | |
reco_bs: int = 128, | |
detect_orientation: bool = False, | |
straighten_pages: bool = False, | |
detect_language: bool = False, | |
**kwargs, | |
) -> KIEPredictor: | |
# Detection | |
det_predictor = detection_predictor( | |
det_arch, | |
pretrained=pretrained, | |
pretrained_backbone=pretrained_backbone, | |
batch_size=det_bs, | |
assume_straight_pages=assume_straight_pages, | |
preserve_aspect_ratio=preserve_aspect_ratio, | |
symmetric_pad=symmetric_pad, | |
) | |
# Recognition | |
reco_predictor = recognition_predictor( | |
reco_arch, | |
pretrained=pretrained, | |
pretrained_backbone=pretrained_backbone, | |
batch_size=reco_bs, | |
) | |
return KIEPredictor( | |
det_predictor, | |
reco_predictor, | |
assume_straight_pages=assume_straight_pages, | |
preserve_aspect_ratio=preserve_aspect_ratio, | |
symmetric_pad=symmetric_pad, | |
detect_orientation=detect_orientation, | |
straighten_pages=straighten_pages, | |
detect_language=detect_language, | |
**kwargs, | |
) | |
def kie_predictor( | |
det_arch: Any = "fast_base", | |
reco_arch: Any = "crnn_vgg16_bn", | |
pretrained: bool = False, | |
pretrained_backbone: bool = True, | |
assume_straight_pages: bool = True, | |
preserve_aspect_ratio: bool = True, | |
symmetric_pad: bool = True, | |
export_as_straight_boxes: bool = False, | |
detect_orientation: bool = False, | |
straighten_pages: bool = False, | |
detect_language: bool = False, | |
**kwargs: Any, | |
) -> KIEPredictor: | |
"""End-to-end KIE architecture using one model for localization, and another for text recognition. | |
>>> import numpy as np | |
>>> from doctr.models import ocr_predictor | |
>>> model = ocr_predictor('db_resnet50', 'crnn_vgg16_bn', pretrained=True) | |
>>> input_page = (255 * np.random.rand(600, 800, 3)).astype(np.uint8) | |
>>> out = model([input_page]) | |
Args: | |
---- | |
det_arch: name of the detection architecture or the model itself to use | |
(e.g. 'db_resnet50', 'db_mobilenet_v3_large') | |
reco_arch: name of the recognition architecture or the model itself to use | |
(e.g. 'crnn_vgg16_bn', 'sar_resnet31') | |
pretrained: If True, returns a model pre-trained on our OCR dataset | |
pretrained_backbone: If True, returns a model with a pretrained backbone | |
assume_straight_pages: if True, speeds up the inference by assuming you only pass straight pages | |
without rotated textual elements. | |
preserve_aspect_ratio: If True, pad the input document image to preserve the aspect ratio before | |
running the detection model on it. | |
symmetric_pad: if True, pad the image symmetrically instead of padding at the bottom-right. | |
export_as_straight_boxes: when assume_straight_pages is set to False, export final predictions | |
(potentially rotated) as straight bounding boxes. | |
detect_orientation: if True, the estimated general page orientation will be added to the predictions for each | |
page. Doing so will slightly deteriorate the overall latency. | |
straighten_pages: if True, estimates the page general orientation | |
based on the segmentation map median line orientation. | |
Then, rotates page before passing it again to the deep learning detection module. | |
Doing so will improve performances for documents with page-uniform rotations. | |
detect_language: if True, the language prediction will be added to the predictions for each | |
page. Doing so will slightly deteriorate the overall latency. | |
kwargs: keyword args of `OCRPredictor` | |
Returns: | |
------- | |
KIE predictor | |
""" | |
return _kie_predictor( | |
det_arch, | |
reco_arch, | |
pretrained, | |
pretrained_backbone=pretrained_backbone, | |
assume_straight_pages=assume_straight_pages, | |
preserve_aspect_ratio=preserve_aspect_ratio, | |
symmetric_pad=symmetric_pad, | |
export_as_straight_boxes=export_as_straight_boxes, | |
detect_orientation=detect_orientation, | |
straighten_pages=straighten_pages, | |
detect_language=detect_language, | |
**kwargs, | |
) | |