Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import math | |
import random | |
from copy import deepcopy | |
from typing import Iterable, Optional, Tuple, Union | |
import numpy as np | |
import tensorflow as tf | |
from doctr.utils.geometry import compute_expanded_shape, rotate_abs_geoms | |
from .base import create_shadow_mask, crop_boxes | |
__all__ = ["invert_colors", "rotate_sample", "crop_detection", "random_shadow", "rotated_img_tensor"] | |
def invert_colors(img: tf.Tensor, min_val: float = 0.6) -> tf.Tensor: | |
"""Invert the colors of an image | |
Args: | |
---- | |
img : tf.Tensor, the image to invert | |
min_val : minimum value of the random shift | |
Returns: | |
------- | |
the inverted image | |
""" | |
out = tf.image.rgb_to_grayscale(img) # Convert to gray | |
# Random RGB shift | |
shift_shape = [img.shape[0], 1, 1, 3] if img.ndim == 4 else [1, 1, 3] | |
rgb_shift = tf.random.uniform(shape=shift_shape, minval=min_val, maxval=1) | |
# Inverse the color | |
if out.dtype == tf.uint8: | |
out = tf.cast(tf.cast(out, dtype=rgb_shift.dtype) * rgb_shift, dtype=tf.uint8) | |
else: | |
out *= tf.cast(rgb_shift, dtype=out.dtype) | |
# Inverse the color | |
out = 255 - out if out.dtype == tf.uint8 else 1 - out | |
return out | |
def rotated_img_tensor(img: tf.Tensor, angle: float, expand: bool = False) -> tf.Tensor: | |
"""Rotate image around the center, interpolation=NEAREST, pad with 0 (black) | |
Args: | |
---- | |
img: image to rotate | |
angle: angle in degrees. +: counter-clockwise, -: clockwise | |
expand: whether the image should be padded before the rotation | |
Returns: | |
------- | |
the rotated image (tensor) | |
""" | |
# Compute the expanded padding | |
h_crop, w_crop = 0, 0 | |
if expand: | |
exp_h, exp_w = compute_expanded_shape(img.shape[:-1], angle) | |
h_diff, w_diff = int(math.ceil(exp_h - img.shape[0])), int(math.ceil(exp_w - img.shape[1])) | |
h_pad, w_pad = max(h_diff, 0), max(w_diff, 0) | |
exp_img = tf.pad(img, tf.constant([[h_pad // 2, h_pad - h_pad // 2], [w_pad // 2, w_pad - w_pad // 2], [0, 0]])) | |
h_crop, w_crop = int(round(max(exp_img.shape[0] - exp_h, 0))), int(round(min(exp_img.shape[1] - exp_w, 0))) | |
else: | |
exp_img = img | |
# Compute the rotation matrix | |
height, width = tf.cast(tf.shape(exp_img)[0], tf.float32), tf.cast(tf.shape(exp_img)[1], tf.float32) | |
cos_angle, sin_angle = tf.math.cos(angle * math.pi / 180.0), tf.math.sin(angle * math.pi / 180.0) | |
x_offset = ((width - 1) - (cos_angle * (width - 1) - sin_angle * (height - 1))) / 2.0 | |
y_offset = ((height - 1) - (sin_angle * (width - 1) + cos_angle * (height - 1))) / 2.0 | |
rotation_matrix = tf.convert_to_tensor( | |
[cos_angle, -sin_angle, x_offset, sin_angle, cos_angle, y_offset, 0.0, 0.0], | |
dtype=tf.float32, | |
) | |
# Rotate the image | |
rotated_img = tf.squeeze( | |
tf.raw_ops.ImageProjectiveTransformV3( | |
images=exp_img[None], # Add a batch dimension for compatibility with ImageProjectiveTransformV3 | |
transforms=rotation_matrix[None], # Add a batch dimension for compatibility with ImageProjectiveTransformV3 | |
output_shape=tf.shape(exp_img)[:2], | |
interpolation="NEAREST", | |
fill_mode="CONSTANT", | |
fill_value=tf.constant(0.0, dtype=tf.float32), | |
) | |
) | |
# Crop the rest | |
if h_crop > 0 or w_crop > 0: | |
h_slice = slice(h_crop // 2, -h_crop // 2) if h_crop > 0 else slice(rotated_img.shape[0]) | |
w_slice = slice(-w_crop // 2, -w_crop // 2) if w_crop > 0 else slice(rotated_img.shape[1]) | |
rotated_img = rotated_img[h_slice, w_slice] | |
return rotated_img | |
def rotate_sample( | |
img: tf.Tensor, | |
geoms: np.ndarray, | |
angle: float, | |
expand: bool = False, | |
) -> Tuple[tf.Tensor, np.ndarray]: | |
"""Rotate image around the center, interpolation=NEAREST, pad with 0 (black) | |
Args: | |
---- | |
img: image to rotate | |
geoms: array of geometries of shape (N, 4) or (N, 4, 2) | |
angle: angle in degrees. +: counter-clockwise, -: clockwise | |
expand: whether the image should be padded before the rotation | |
Returns: | |
------- | |
A tuple of rotated img (tensor), rotated boxes (np array) | |
""" | |
# Rotated the image | |
rotated_img = rotated_img_tensor(img, angle, expand) | |
# Get absolute coords | |
_geoms = deepcopy(geoms) | |
if _geoms.shape[1:] == (4,): | |
if np.max(_geoms) <= 1: | |
_geoms[:, [0, 2]] *= img.shape[1] | |
_geoms[:, [1, 3]] *= img.shape[0] | |
elif _geoms.shape[1:] == (4, 2): | |
if np.max(_geoms) <= 1: | |
_geoms[..., 0] *= img.shape[1] | |
_geoms[..., 1] *= img.shape[0] | |
else: | |
raise AssertionError | |
# Rotate the boxes: xmin, ymin, xmax, ymax or polygons --> (4, 2) polygon | |
rotated_geoms: np.ndarray = rotate_abs_geoms(_geoms, angle, img.shape[:-1], expand).astype(np.float32) | |
# Always return relative boxes to avoid label confusions when resizing is performed aferwards | |
rotated_geoms[..., 0] = rotated_geoms[..., 0] / rotated_img.shape[1] | |
rotated_geoms[..., 1] = rotated_geoms[..., 1] / rotated_img.shape[0] | |
return rotated_img, np.clip(rotated_geoms, 0, 1) | |
def crop_detection( | |
img: tf.Tensor, boxes: np.ndarray, crop_box: Tuple[float, float, float, float] | |
) -> Tuple[tf.Tensor, np.ndarray]: | |
"""Crop and image and associated bboxes | |
Args: | |
---- | |
img: image to crop | |
boxes: array of boxes to clip, absolute (int) or relative (float) | |
crop_box: box (xmin, ymin, xmax, ymax) to crop the image. Relative coords. | |
Returns: | |
------- | |
A tuple of cropped image, cropped boxes, where the image is not resized. | |
""" | |
if any(val < 0 or val > 1 for val in crop_box): | |
raise AssertionError("coordinates of arg `crop_box` should be relative") | |
h, w = img.shape[:2] | |
xmin, ymin = int(round(crop_box[0] * (w - 1))), int(round(crop_box[1] * (h - 1))) | |
xmax, ymax = int(round(crop_box[2] * (w - 1))), int(round(crop_box[3] * (h - 1))) | |
cropped_img = tf.image.crop_to_bounding_box(img, ymin, xmin, ymax - ymin, xmax - xmin) | |
# Crop the box | |
boxes = crop_boxes(boxes, crop_box if boxes.max() <= 1 else (xmin, ymin, xmax, ymax)) | |
return cropped_img, boxes | |
def _gaussian_filter( | |
img: tf.Tensor, | |
kernel_size: Union[int, Iterable[int]], | |
sigma: float, | |
mode: Optional[str] = None, | |
pad_value: Optional[int] = 0, | |
): | |
"""Apply Gaussian filter to image. | |
Adapted from: https://github.com/tensorflow/addons/blob/master/tensorflow_addons/image/filters.py | |
Args: | |
---- | |
img: image to filter of shape (N, H, W, C) | |
kernel_size: kernel size of the filter | |
sigma: standard deviation of the Gaussian filter | |
mode: padding mode, one of "CONSTANT", "REFLECT", "SYMMETRIC" | |
pad_value: value to pad the image with | |
Returns: | |
------- | |
A tensor of shape (N, H, W, C) | |
""" | |
ksize = tf.convert_to_tensor(tf.broadcast_to(kernel_size, [2]), dtype=tf.int32) | |
sigma = tf.convert_to_tensor(tf.broadcast_to(sigma, [2]), dtype=img.dtype) | |
assert mode in ("CONSTANT", "REFLECT", "SYMMETRIC"), "mode should be one of 'CONSTANT', 'REFLECT', 'SYMMETRIC'" | |
mode = "CONSTANT" if mode is None else str.upper(mode) | |
constant_values = ( | |
tf.zeros([], dtype=img.dtype) if pad_value is None else tf.convert_to_tensor(pad_value, dtype=img.dtype) | |
) | |
def kernel1d(ksize: tf.Tensor, sigma: tf.Tensor, dtype: tf.DType): | |
x = tf.range(ksize, dtype=dtype) | |
x = x - tf.cast(tf.math.floordiv(ksize, 2), dtype=dtype) | |
x = x + tf.where(tf.math.equal(tf.math.mod(ksize, 2), 0), tf.cast(0.5, dtype), 0) | |
g = tf.math.exp(-(tf.math.pow(x, 2) / (2 * tf.math.pow(sigma, 2)))) | |
g = g / tf.reduce_sum(g) | |
return g | |
def kernel2d(ksize: tf.Tensor, sigma: tf.Tensor, dtype: tf.DType): | |
kernel_x = kernel1d(ksize[0], sigma[0], dtype) | |
kernel_y = kernel1d(ksize[1], sigma[1], dtype) | |
return tf.matmul( | |
tf.expand_dims(kernel_x, axis=-1), | |
tf.transpose(tf.expand_dims(kernel_y, axis=-1)), | |
) | |
g = kernel2d(ksize, sigma, img.dtype) | |
# Pad the image | |
height, width = ksize[0], ksize[1] | |
paddings = [ | |
[0, 0], | |
[(height - 1) // 2, height - 1 - (height - 1) // 2], | |
[(width - 1) // 2, width - 1 - (width - 1) // 2], | |
[0, 0], | |
] | |
img = tf.pad(img, paddings, mode=mode, constant_values=constant_values) | |
channel = tf.shape(img)[-1] | |
shape = tf.concat([ksize, tf.constant([1, 1], ksize.dtype)], axis=0) | |
g = tf.reshape(g, shape) | |
shape = tf.concat([ksize, [channel], tf.constant([1], ksize.dtype)], axis=0) | |
g = tf.broadcast_to(g, shape) | |
return tf.nn.depthwise_conv2d(img, g, [1, 1, 1, 1], padding="VALID", data_format="NHWC") | |
def random_shadow(img: tf.Tensor, opacity_range: Tuple[float, float], **kwargs) -> tf.Tensor: | |
"""Apply a random shadow to a given image | |
Args: | |
---- | |
img: image to modify | |
opacity_range: the minimum and maximum desired opacity of the shadow | |
**kwargs: additional arguments to pass to `create_shadow_mask` | |
Returns: | |
------- | |
shadowed image | |
""" | |
shadow_mask = create_shadow_mask(img.shape[:2], **kwargs) | |
opacity = np.random.uniform(*opacity_range) | |
shadow_tensor = 1 - tf.convert_to_tensor(shadow_mask[..., None], dtype=tf.float32) | |
# Add some blur to make it believable | |
k = 7 + int(2 * 4 * random.random()) | |
sigma = random.uniform(0.5, 5.0) | |
shadow_tensor = _gaussian_filter( | |
shadow_tensor[tf.newaxis, ...], | |
kernel_size=k, | |
sigma=sigma, | |
mode="REFLECT", | |
) | |
return tf.squeeze(opacity * shadow_tensor * img + (1 - opacity) * img, axis=0) | |