Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import math | |
import random | |
from typing import Any, Callable, List, Optional, Tuple, Union | |
import numpy as np | |
from doctr.utils.repr import NestedObject | |
from .. import functional as F | |
__all__ = ["SampleCompose", "ImageTransform", "ColorInversion", "OneOf", "RandomApply", "RandomRotate", "RandomCrop"] | |
class SampleCompose(NestedObject): | |
"""Implements a wrapper that will apply transformations sequentially on both image and target | |
.. tabs:: | |
.. tab:: TensorFlow | |
.. code:: python | |
>>> import numpy as np | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import SampleCompose, ImageTransform, ColorInversion, RandomRotate | |
>>> transfo = SampleCompose([ImageTransform(ColorInversion((32, 32))), RandomRotate(30)]) | |
>>> out, out_boxes = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1), np.zeros((2, 4))) | |
.. tab:: PyTorch | |
.. code:: python | |
>>> import numpy as np | |
>>> import torch | |
>>> from doctr.transforms import SampleCompose, ImageTransform, ColorInversion, RandomRotate | |
>>> transfos = SampleCompose([ImageTransform(ColorInversion((32, 32))), RandomRotate(30)]) | |
>>> out, out_boxes = transfos(torch.rand(8, 64, 64, 3), np.zeros((2, 4))) | |
Args: | |
---- | |
transforms: list of transformation modules | |
""" | |
_children_names: List[str] = ["sample_transforms"] | |
def __init__(self, transforms: List[Callable[[Any, Any], Tuple[Any, Any]]]) -> None: | |
self.sample_transforms = transforms | |
def __call__(self, x: Any, target: Any) -> Tuple[Any, Any]: | |
for t in self.sample_transforms: | |
x, target = t(x, target) | |
return x, target | |
class ImageTransform(NestedObject): | |
"""Implements a transform wrapper to turn an image-only transformation into an image+target transform | |
.. tabs:: | |
.. tab:: TensorFlow | |
.. code:: python | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import ImageTransform, ColorInversion | |
>>> transfo = ImageTransform(ColorInversion((32, 32))) | |
>>> out, _ = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1), None) | |
.. tab:: PyTorch | |
.. code:: python | |
>>> import torch | |
>>> from doctr.transforms import ImageTransform, ColorInversion | |
>>> transfo = ImageTransform(ColorInversion((32, 32))) | |
>>> out, _ = transfo(torch.rand(8, 64, 64, 3), None) | |
Args: | |
---- | |
transform: the image transformation module to wrap | |
""" | |
_children_names: List[str] = ["img_transform"] | |
def __init__(self, transform: Callable[[Any], Any]) -> None: | |
self.img_transform = transform | |
def __call__(self, img: Any, target: Any) -> Tuple[Any, Any]: | |
img = self.img_transform(img) | |
return img, target | |
class ColorInversion(NestedObject): | |
"""Applies the following tranformation to a tensor (image or batch of images): | |
convert to grayscale, colorize (shift 0-values randomly), and then invert colors | |
.. tabs:: | |
.. tab:: TensorFlow | |
.. code:: python | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import ColorInversion | |
>>> transfo = ColorInversion(min_val=0.6) | |
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) | |
.. tab:: PyTorch | |
.. code:: python | |
>>> import torch | |
>>> from doctr.transforms import ColorInversion | |
>>> transfo = ColorInversion(min_val=0.6) | |
>>> out = transfo(torch.rand(8, 64, 64, 3)) | |
Args: | |
---- | |
min_val: range [min_val, 1] to colorize RGB pixels | |
""" | |
def __init__(self, min_val: float = 0.5) -> None: | |
self.min_val = min_val | |
def extra_repr(self) -> str: | |
return f"min_val={self.min_val}" | |
def __call__(self, img: Any) -> Any: | |
return F.invert_colors(img, self.min_val) | |
class OneOf(NestedObject): | |
"""Randomly apply one of the input transformations | |
.. tabs:: | |
.. tab:: TensorFlow | |
.. code:: python | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import OneOf | |
>>> transfo = OneOf([JpegQuality(), Gamma()]) | |
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) | |
.. tab:: PyTorch | |
.. code:: python | |
>>> import torch | |
>>> from doctr.transforms import OneOf | |
>>> transfo = OneOf([JpegQuality(), Gamma()]) | |
>>> out = transfo(torch.rand(1, 64, 64, 3)) | |
Args: | |
---- | |
transforms: list of transformations, one only will be picked | |
""" | |
_children_names: List[str] = ["transforms"] | |
def __init__(self, transforms: List[Callable[[Any], Any]]) -> None: | |
self.transforms = transforms | |
def __call__(self, img: Any, target: Optional[np.ndarray] = None) -> Union[Any, Tuple[Any, np.ndarray]]: | |
# Pick transformation | |
transfo = self.transforms[int(random.random() * len(self.transforms))] | |
# Apply | |
return transfo(img) if target is None else transfo(img, target) # type: ignore[call-arg] | |
class RandomApply(NestedObject): | |
"""Apply with a probability p the input transformation | |
.. tabs:: | |
.. tab:: TensorFlow | |
.. code:: python | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import RandomApply | |
>>> transfo = RandomApply(Gamma(), p=.5) | |
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) | |
.. tab:: PyTorch | |
.. code:: python | |
>>> import torch | |
>>> from doctr.transforms import RandomApply | |
>>> transfo = RandomApply(Gamma(), p=.5) | |
>>> out = transfo(torch.rand(1, 64, 64, 3)) | |
Args: | |
---- | |
transform: transformation to apply | |
p: probability to apply | |
""" | |
def __init__(self, transform: Callable[[Any], Any], p: float = 0.5) -> None: | |
self.transform = transform | |
self.p = p | |
def extra_repr(self) -> str: | |
return f"transform={self.transform}, p={self.p}" | |
def __call__(self, img: Any, target: Optional[np.ndarray] = None) -> Union[Any, Tuple[Any, np.ndarray]]: | |
if random.random() < self.p: | |
return self.transform(img) if target is None else self.transform(img, target) # type: ignore[call-arg] | |
return img if target is None else (img, target) | |
class RandomRotate(NestedObject): | |
"""Randomly rotate a tensor image and its boxes | |
.. image:: https://doctr-static.mindee.com/models?id=v0.4.0/rotation_illustration.png&src=0 | |
:align: center | |
Args: | |
---- | |
max_angle: maximum angle for rotation, in degrees. Angles will be uniformly picked in | |
[-max_angle, max_angle] | |
expand: whether the image should be padded before the rotation | |
""" | |
def __init__(self, max_angle: float = 5.0, expand: bool = False) -> None: | |
self.max_angle = max_angle | |
self.expand = expand | |
def extra_repr(self) -> str: | |
return f"max_angle={self.max_angle}, expand={self.expand}" | |
def __call__(self, img: Any, target: np.ndarray) -> Tuple[Any, np.ndarray]: | |
angle = random.uniform(-self.max_angle, self.max_angle) | |
r_img, r_polys = F.rotate_sample(img, target, angle, self.expand) | |
# Removes deleted boxes | |
is_kept = (r_polys.max(1) > r_polys.min(1)).sum(1) == 2 | |
return r_img, r_polys[is_kept] | |
class RandomCrop(NestedObject): | |
"""Randomly crop a tensor image and its boxes | |
Args: | |
---- | |
scale: tuple of floats, relative (min_area, max_area) of the crop | |
ratio: tuple of float, relative (min_ratio, max_ratio) where ratio = h/w | |
""" | |
def __init__(self, scale: Tuple[float, float] = (0.08, 1.0), ratio: Tuple[float, float] = (0.75, 1.33)) -> None: | |
self.scale = scale | |
self.ratio = ratio | |
def extra_repr(self) -> str: | |
return f"scale={self.scale}, ratio={self.ratio}" | |
def __call__(self, img: Any, target: np.ndarray) -> Tuple[Any, np.ndarray]: | |
scale = random.uniform(self.scale[0], self.scale[1]) | |
ratio = random.uniform(self.ratio[0], self.ratio[1]) | |
height, width = img.shape[:2] | |
# Calculate crop size | |
crop_area = scale * width * height | |
aspect_ratio = ratio * (width / height) | |
crop_width = int(round(math.sqrt(crop_area * aspect_ratio))) | |
crop_height = int(round(math.sqrt(crop_area / aspect_ratio))) | |
# Ensure crop size does not exceed image dimensions | |
crop_width = min(crop_width, width) | |
crop_height = min(crop_height, height) | |
# Randomly select crop position | |
x = random.randint(0, width - crop_width) | |
y = random.randint(0, height - crop_height) | |
# relative crop box | |
crop_box = (x / width, y / height, (x + crop_width) / width, (y + crop_height) / height) | |
if target.shape[1:] == (4, 2): | |
min_xy = np.min(target, axis=1) | |
max_xy = np.max(target, axis=1) | |
_target = np.concatenate((min_xy, max_xy), axis=1) | |
else: | |
_target = target | |
# Crop image and targets | |
croped_img, crop_boxes = F.crop_detection(img, _target, crop_box) | |
# hard fallback if no box is kept | |
if crop_boxes.shape[0] == 0: | |
return img, target | |
# clip boxes | |
return croped_img, np.clip(crop_boxes, 0, 1) | |