Spaces:
Runtime error
Runtime error
Aditya Rathor
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1095 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from paddleocr import PaddleOCR
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import os
|
7 |
+
|
8 |
+
# sys.path.insert(0, os.path.abspath(os.path.dirname(__file__)))
|
9 |
+
|
10 |
+
|
11 |
+
from doctr.models import ocr_predictor
|
12 |
+
from torch.utils.data import DataLoader
|
13 |
+
from doctr.io import DocumentFile
|
14 |
+
|
15 |
+
|
16 |
+
import math
|
17 |
+
from typing import Tuple, Union
|
18 |
+
|
19 |
+
import cv2
|
20 |
+
import numpy as np
|
21 |
+
import os
|
22 |
+
|
23 |
+
from deskew import determine_skew
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
print(sys.version)
|
29 |
+
ocr = PaddleOCR(lang='en')
|
30 |
+
model = ocr_predictor(pretrained=True)
|
31 |
+
|
32 |
+
ocr = PaddleOCR(lang='en')
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
def find_surr_keys(unassigned_key, known_keys):
|
37 |
+
# Sort known keys
|
38 |
+
print(known_keys)
|
39 |
+
known_keys = sorted(known_keys)
|
40 |
+
# Initialize distances and closest keys
|
41 |
+
closest_keys = []
|
42 |
+
for k in known_keys:
|
43 |
+
closest_keys.append((abs(int(k) - int(unassigned_key)), k))
|
44 |
+
# Sort by distance
|
45 |
+
closest_keys.sort()
|
46 |
+
# Return the two closest known keys
|
47 |
+
if(closest_keys[0][1]<unassigned_key and closest_keys[0][1]>unassigned_key):
|
48 |
+
return [closest_keys[0][1], closest_keys[1][1]]
|
49 |
+
else:
|
50 |
+
raise ValueError(f"No closest keys found for unassigned key: {unassigned_key}")
|
51 |
+
|
52 |
+
def label_text(text):
|
53 |
+
# Define the two lists
|
54 |
+
list1 = ['t', 'r', 'u', 'T', 'R', 'U']
|
55 |
+
list2 = ['f', 'a', 'l', 's', 'F', 'A', 'L', 'S']
|
56 |
+
|
57 |
+
# Count the matches for each list
|
58 |
+
count1 = sum(text.count(char) for char in list1)
|
59 |
+
count2 = sum(text.count(char) for char in list2)
|
60 |
+
|
61 |
+
# Determine the label based on the counts
|
62 |
+
if count1 > count2:
|
63 |
+
return True
|
64 |
+
elif count1!=0 or count2!=0:
|
65 |
+
return False
|
66 |
+
|
67 |
+
|
68 |
+
def percentMatch(text1,text2):
|
69 |
+
list = ['t', 'r', 'u', 'T', 'R', 'U','f', 'a', 'l', 's', 'F', 'A', 'L', 'S']
|
70 |
+
|
71 |
+
if(text1):
|
72 |
+
count1 = sum(text1.count(char) for char in list)
|
73 |
+
|
74 |
+
|
75 |
+
count2 = sum(text2.count(char) for char in list)
|
76 |
+
|
77 |
+
if(count1==3 and count2==4 or count1==4 and count2==3 ): #if one says true and other says false then priority given to 2nd
|
78 |
+
print("true and false collision so given priority to text2 which is the incoming text")
|
79 |
+
return 2
|
80 |
+
|
81 |
+
if(count1>count2):
|
82 |
+
print("text1 i.e the prev text is the winner")
|
83 |
+
return 1
|
84 |
+
else:
|
85 |
+
print("text2 i.e the incoming text is the winner")
|
86 |
+
return 2
|
87 |
+
else:
|
88 |
+
print("text1 not there so text2 is the winner")
|
89 |
+
return 2
|
90 |
+
|
91 |
+
def count_true_false(d): #in a dictionary to check how many T/F are there.
|
92 |
+
true_count = sum(1 for v in d.values() if v is True)
|
93 |
+
false_count = sum(1 for v in d.values() if v is False)
|
94 |
+
return true_count, false_count
|
95 |
+
|
96 |
+
def merge_dicts(dict1, dict2):
|
97 |
+
true_count1, false_count1 = count_true_false(dict1)
|
98 |
+
true_count2, false_count2 = count_true_false(dict2)
|
99 |
+
|
100 |
+
if (true_count1 + false_count1) >= (true_count2 + false_count2):
|
101 |
+
final_dict = dict1.copy()
|
102 |
+
y_dirn_gap=False
|
103 |
+
else:
|
104 |
+
final_dict = dict2.copy()
|
105 |
+
y_dirn_gap=True
|
106 |
+
|
107 |
+
return final_dict,y_dirn_gap
|
108 |
+
|
109 |
+
|
110 |
+
def assign_true_false_or_unknown(true_list, false_list, question_dict,total_questions):
|
111 |
+
# Initialize the final dictionary
|
112 |
+
final_dict = {str(i): 'UNASSIGNED' for i in range(1, total_questions+1)}
|
113 |
+
unassigned_keys=[]
|
114 |
+
assigned_keys=[]
|
115 |
+
|
116 |
+
# Iterate over each question and its y-coordinate
|
117 |
+
for question, y in question_dict.items():
|
118 |
+
# compute diff with true list such that we sub t/f box from s/n box
|
119 |
+
# true_differences= [y - ty for ty in true_list]
|
120 |
+
# Compute absolute differences with true list
|
121 |
+
true_abs_differences = [abs(y - ty) for ty in true_list]
|
122 |
+
# Compute absolute differences with false list
|
123 |
+
# false_differences= [y - ty for ty in false_list]
|
124 |
+
false_abs_differences = [abs(y - fy) for fy in false_list]
|
125 |
+
|
126 |
+
|
127 |
+
# Find the minimum differences
|
128 |
+
|
129 |
+
# min_true_diff = min((diff for diff in true_differences if diff > 0), default=float('inf'))
|
130 |
+
# min_false_diff = min((diff for diff in false_differences if diff > 0), default=float('inf'))
|
131 |
+
|
132 |
+
|
133 |
+
min_true_abs_diff=min(true_abs_differences) if true_abs_differences else float('inf')
|
134 |
+
min_false_abs_diff=min(false_abs_differences) if false_abs_differences else float('inf')
|
135 |
+
|
136 |
+
# Determine the smallest difference
|
137 |
+
# min_diff = min(min_true_diff, min_false_diff)
|
138 |
+
min_abs_diff=min(min_true_abs_diff,min_false_abs_diff)
|
139 |
+
|
140 |
+
|
141 |
+
# Assign the value based on the smallest difference
|
142 |
+
# if min_diff < 360:
|
143 |
+
# if min_true_diff < min_false_diff:
|
144 |
+
# final_dict[question] = True
|
145 |
+
# true_list.pop(true_differences.index(min_true_diff))
|
146 |
+
# else:
|
147 |
+
# final_dict[question] = False
|
148 |
+
# false_list.pop(false_differences.index(min_false_diff))
|
149 |
+
# else:
|
150 |
+
# checking the abs diff option if nothing can find in positive diff option
|
151 |
+
if min_abs_diff < 300:
|
152 |
+
if min_true_abs_diff < min_false_abs_diff:
|
153 |
+
final_dict[question] = True
|
154 |
+
true_list.pop(true_abs_differences.index(min_true_abs_diff))
|
155 |
+
else:
|
156 |
+
final_dict[question] = False
|
157 |
+
false_list.pop(false_abs_differences.index(min_false_abs_diff))
|
158 |
+
|
159 |
+
else:
|
160 |
+
final_dict[question] = 'NULL'
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
return final_dict
|
169 |
+
|
170 |
+
|
171 |
+
def assign_true_false_or_unknown_rotated(true_list,false_list,true_list_x,false_list_x,question_dict,question_dict_x,total_questions):
|
172 |
+
final_dict = {str(i): 'UNASSIGNED' for i in range(1, total_questions+1)}
|
173 |
+
unassigned_keys=[]
|
174 |
+
assigned_keys=[]
|
175 |
+
final_dict_y={str(i): 'UNASSIGNED' for i in range(1, total_questions+1)}
|
176 |
+
final_dict_x={str(i): 'UNASSIGNED' for i in range(1, total_questions+1)}
|
177 |
+
|
178 |
+
# Iterate over each question and its y-coordinate
|
179 |
+
for question, y in question_dict.items():
|
180 |
+
# Compute absolute differences with true list
|
181 |
+
true_differences= [y - ty for ty in true_list]
|
182 |
+
true_abs_differences = [abs(y - ty) for ty in true_list]
|
183 |
+
# Compute absolute differences with false list
|
184 |
+
false_differences= [y - fy for fy in false_list]
|
185 |
+
false_abs_differences = [abs(y - fy) for fy in false_list]
|
186 |
+
|
187 |
+
|
188 |
+
# Find the minimum differences
|
189 |
+
|
190 |
+
min_true_diff = min((diff for diff in true_differences if diff > 0), default=float('inf'))
|
191 |
+
min_false_diff = min((diff for diff in false_differences if diff > 0), default=float('inf'))
|
192 |
+
|
193 |
+
|
194 |
+
min_true_abs_diff=min(true_abs_differences) if true_abs_differences else float('inf')
|
195 |
+
min_false_abs_diff=min(false_abs_differences) if false_abs_differences else float('inf')
|
196 |
+
|
197 |
+
# Determine the smallest difference
|
198 |
+
min_diff = min(min_true_diff, min_false_diff)
|
199 |
+
min_abs_diff=min(min_true_abs_diff,min_false_abs_diff)
|
200 |
+
|
201 |
+
# print("the question number is :",question)
|
202 |
+
# print("the min dist is :",min_diff)
|
203 |
+
# print("the min abs_diff is :",min_abs_diff)
|
204 |
+
# print("the false abs diff",false_abs_differences)
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
# Assign the value based on the smallest difference first going with abs diff as for upside down it will favour abs
|
209 |
+
if min_abs_diff < 310:
|
210 |
+
if min_true_abs_diff < min_false_abs_diff:
|
211 |
+
final_dict_y[question] = True
|
212 |
+
true_list.pop(true_abs_differences.index(min_true_abs_diff))
|
213 |
+
else:
|
214 |
+
final_dict_y[question] = False
|
215 |
+
false_list.pop(false_abs_differences.index(min_false_abs_diff))
|
216 |
+
else:
|
217 |
+
# checking the postive diff option if nothing can find in abs diff option
|
218 |
+
if min_diff < 310:
|
219 |
+
print(question)
|
220 |
+
if min_true_diff < min_false_diff:
|
221 |
+
|
222 |
+
final_dict_y[question] = True
|
223 |
+
true_list.pop(true_differences.index(min_true_diff))
|
224 |
+
else:
|
225 |
+
final_dict_y[question] = False
|
226 |
+
false_list.pop(false_differences.index(min_false_diff))
|
227 |
+
|
228 |
+
else:
|
229 |
+
final_dict_y[question] = 'NULL'
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
for question,x in question_dict_x.items():
|
235 |
+
|
236 |
+
# Compute absolute differences with true list
|
237 |
+
true_differences= [x - tx for tx in true_list_x]
|
238 |
+
true_abs_differences = [abs(x - tx) for tx in true_list_x]
|
239 |
+
# Compute absolute differences with false list
|
240 |
+
false_differences= [x - fy for fy in false_list_x]
|
241 |
+
false_abs_differences = [abs(x - fy) for fy in false_list_x]
|
242 |
+
|
243 |
+
|
244 |
+
# Find the minimum differences
|
245 |
+
|
246 |
+
min_true_diff = min((diff for diff in true_differences if diff > 0), default=float('inf'))
|
247 |
+
min_false_diff = min((diff for diff in false_differences if diff > 0), default=float('inf'))
|
248 |
+
|
249 |
+
|
250 |
+
min_true_abs_diff=min(true_abs_differences) if true_abs_differences else float('inf')
|
251 |
+
min_false_abs_diff=min(false_abs_differences) if false_abs_differences else float('inf')
|
252 |
+
|
253 |
+
# Determine the smallest difference
|
254 |
+
min_diff = min(min_true_diff, min_false_diff)
|
255 |
+
min_abs_diff=min(min_true_abs_diff,min_false_abs_diff)
|
256 |
+
|
257 |
+
if min_diff < 310:
|
258 |
+
if min_true_diff < min_false_diff:
|
259 |
+
final_dict_x[question] = True
|
260 |
+
true_list_x.pop(true_differences.index(min_true_diff))
|
261 |
+
else:
|
262 |
+
final_dict_x[question] = False
|
263 |
+
false_list_x.pop(false_differences.index(min_false_diff))
|
264 |
+
else:
|
265 |
+
# checking the abs diff option if nothing can find in positive diff option
|
266 |
+
if min_abs_diff < 310:
|
267 |
+
if min_true_abs_diff < min_false_abs_diff:
|
268 |
+
final_dict_x[question] = True
|
269 |
+
true_list_x.pop(true_abs_differences.index(min_true_abs_diff))
|
270 |
+
else:
|
271 |
+
final_dict_x[question] = False
|
272 |
+
false_list_x.pop(false_abs_differences.index(min_false_abs_diff))
|
273 |
+
|
274 |
+
else:
|
275 |
+
final_dict_x[question] = 'NULL'
|
276 |
+
|
277 |
+
|
278 |
+
print("the final dict for y is: ")
|
279 |
+
print(final_dict_y)
|
280 |
+
print("the final dict for x is: ")
|
281 |
+
print(final_dict_x)
|
282 |
+
final_dict,y_dirn_gap=merge_dicts(final_dict_x,final_dict_y)
|
283 |
+
|
284 |
+
|
285 |
+
if 'L' in final_dict:
|
286 |
+
final_dict['7']=final_dict['L']
|
287 |
+
del final_dict['L']
|
288 |
+
|
289 |
+
if 'I' in final_dict:
|
290 |
+
final_dict['1']=final_dict['I']
|
291 |
+
del final_dict['I']
|
292 |
+
|
293 |
+
if y_dirn_gap and '6' in final_dict and '9' in final_dict: #means image is inverted and 6 and 9 true and false value needs to swapped out
|
294 |
+
temp=final_dict['6']
|
295 |
+
final_dict['6']=final_dict['9']
|
296 |
+
final_dict['9']=temp
|
297 |
+
|
298 |
+
|
299 |
+
return final_dict
|
300 |
+
|
301 |
+
def process_using_paddleocr(image_path,output_folder,output_folder1,total_questions):
|
302 |
+
|
303 |
+
ocr = PaddleOCR(lang='en')
|
304 |
+
base_name = os.path.basename(image_path)
|
305 |
+
image_cv = cv2.imread(image_path)
|
306 |
+
print("!------------------------------start with paddleocr-----------------------------------!")
|
307 |
+
print("Started processing of the image :",base_name)
|
308 |
+
|
309 |
+
output = ocr.ocr(image_path)[0]
|
310 |
+
|
311 |
+
|
312 |
+
|
313 |
+
texts = [line[1][0] for line in output]
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
print("OCR detection done")
|
320 |
+
|
321 |
+
boxes = [line[0] for line in output]
|
322 |
+
# probabilities = [line[1][1] for line in output]
|
323 |
+
|
324 |
+
|
325 |
+
|
326 |
+
image_boxes = image_cv.copy()
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
# print("!------------------------------all coordinates-----------------------------------!")
|
331 |
+
|
332 |
+
for box,text in zip(boxes,texts):
|
333 |
+
cv2.rectangle(image_boxes,(int(box[0][0]),int(box[0][1])),(int(box[2][0]),int(box[2][1])),(0,0,255),5) #needs top left and bottom right to draw bounding box
|
334 |
+
cv2.putText(image_boxes,text,(int(box[0][0]),int(box[0][1])),cv2.FONT_HERSHEY_SIMPLEX,4,(222,0,0),3)
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
|
341 |
+
alldet_file_name = f'detect_{base_name}'
|
342 |
+
alldet_file_path = os.path.join(output_folder1, alldet_file_name)
|
343 |
+
|
344 |
+
# Save the processed image
|
345 |
+
cv2.imwrite(alldet_file_path, image_boxes)
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
+
for box, text in zip(boxes, texts):
|
350 |
+
if text=="SN" or text=="NS":
|
351 |
+
num_l_x1=box[0][0]
|
352 |
+
num_r_x1=box[2][0]+140
|
353 |
+
num_l_y1=box[0][1]
|
354 |
+
num_r_y1=box[2][1]+140
|
355 |
+
print("left top x of SN:",num_l_x1)
|
356 |
+
print("bottom right x of SN:",num_r_x1)
|
357 |
+
print("left top y of SN:",num_l_y1)
|
358 |
+
print("bottom right y of SN:",num_r_y1)
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
|
363 |
+
cons_boxes_image=image_cv.copy()
|
364 |
+
true_list=[]
|
365 |
+
false_list=[]
|
366 |
+
|
367 |
+
true_list_x=[]
|
368 |
+
false_list_x=[]
|
369 |
+
|
370 |
+
|
371 |
+
numbers_dict={}
|
372 |
+
numbers_dict_x={}
|
373 |
+
c=0
|
374 |
+
prev_x=0
|
375 |
+
prev_y=0
|
376 |
+
|
377 |
+
|
378 |
+
# this is for s/n column
|
379 |
+
try:
|
380 |
+
for box, text in zip(boxes, texts):
|
381 |
+
# print(f"the text is : {text}")
|
382 |
+
|
383 |
+
|
384 |
+
box_top_left_x = int(box[0][0])
|
385 |
+
box_top_left_y=int(box[0][1])
|
386 |
+
box_bottom_right_x = int(box[2][0])
|
387 |
+
box_bottom_right_y = int(box[2][1])
|
388 |
+
box_width_x = box_bottom_right_x - box_top_left_x
|
389 |
+
box_width_y = box_bottom_right_y - box_top_left_y
|
390 |
+
if (num_l_x1 <= box_bottom_right_x <= num_r_x1 or num_l_y1<= box_bottom_right_y<=num_r_y1) and box_width_x <= 200 and box_width_y <= 200 and text!="SN" and text!="NS":
|
391 |
+
# print("entered in the S/N column ")
|
392 |
+
# print(text)
|
393 |
+
# print(box)
|
394 |
+
numbers_dict[text] = int(box[0][1])
|
395 |
+
numbers_dict_x[text]=int(box[0][0])
|
396 |
+
|
397 |
+
cv2.rectangle(cons_boxes_image, (int(box[0][0]), int(box[0][1])), (int(box[2][0]), int(box[2][1])), (0, 0, 255), 5)
|
398 |
+
cv2.putText(cons_boxes_image, text, (int(box[0][0]), int(box[0][1])), cv2.FONT_HERSHEY_SIMPLEX, 4, (222, 0, 0), 1)
|
399 |
+
|
400 |
+
|
401 |
+
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
|
411 |
+
#error in detection of S/N column
|
412 |
+
except NameError:
|
413 |
+
print("cant detect s/n column also so going with all detection using box width")
|
414 |
+
c=0
|
415 |
+
for box,text in zip(boxes,texts):
|
416 |
+
box_top_left_x = int(box[0][0])
|
417 |
+
box_top_left_y=int(box[0][1])
|
418 |
+
box_bottom_right_x = int(box[2][0])
|
419 |
+
box_bottom_right_y = int(box[2][1])
|
420 |
+
box_width_x = box_bottom_right_x - box_top_left_x
|
421 |
+
box_width_y = box_bottom_right_y - box_top_left_y
|
422 |
+
|
423 |
+
|
424 |
+
if (box_width_x <= 80 and box_width_y <= 80):
|
425 |
+
if text.isdigit():
|
426 |
+
number = int(text)
|
427 |
+
if 1 <= number <= total_questions+1:
|
428 |
+
# Store in dictionaries only if the number is between 1 and 10
|
429 |
+
numbers_dict[text] = int(box[0][1])
|
430 |
+
numbers_dict_x[text] = int(box[0][0])
|
431 |
+
|
432 |
+
# Visualize the rectangle and text on the image (optional)
|
433 |
+
cv2.rectangle(cons_boxes_image, (int(box[0][0]), int(box[0][1])), (int(box[1][0]), int(box[1][1])), (0, 0, 255), 5)
|
434 |
+
cv2.putText(cons_boxes_image, text, (int(box[0][0]), int(box[0][1])), cv2.FONT_HERSHEY_SIMPLEX, 4, (222, 0, 0), 1)
|
435 |
+
|
436 |
+
if((box_width_x<=300 and box_width_y<=300) and ' ' not in text and label_text(text)==True):
|
437 |
+
if(c==0):
|
438 |
+
print("first t/f detection")
|
439 |
+
print(text)
|
440 |
+
print(box)
|
441 |
+
prev_y=box[0][1]
|
442 |
+
prev_x=box[0][0]
|
443 |
+
true_list.append(int(box[0][1]))
|
444 |
+
true_list_x.append(int(box[0][0]))
|
445 |
+
|
446 |
+
else:
|
447 |
+
|
448 |
+
if((abs(box[0][0]-prev_x)>160) or abs(box[0][1]-prev_y)>160):
|
449 |
+
print(text)
|
450 |
+
print(box)
|
451 |
+
true_list.append(int(box[0][1]))
|
452 |
+
true_list_x.append(int(box[0][0]))
|
453 |
+
prev_y=box[0][1]
|
454 |
+
prev_x=box[0][0]
|
455 |
+
|
456 |
+
c+=1
|
457 |
+
|
458 |
+
cv2.rectangle(cons_boxes_image,(int(box[0][0]),int(box[0][1])),(int(box[2][0]),int(box[2][1])),(0,0,255),5)
|
459 |
+
cv2.putText(cons_boxes_image,text,(int(box[0][0]),int(box[0][1])),cv2.FONT_HERSHEY_SIMPLEX,4,(222,0,0),1)
|
460 |
+
|
461 |
+
if((box_width_x<=300 and box_width_y<=300) and ' ' not in text and label_text(text)==False):
|
462 |
+
if(c==0):
|
463 |
+
print("first t/f detection")
|
464 |
+
print(text)
|
465 |
+
print(box)
|
466 |
+
prev_y=box[0][1]
|
467 |
+
prev_x=box[0][0]
|
468 |
+
|
469 |
+
false_list.append(int(box[0][1]))
|
470 |
+
false_list_x.append(int(box[0][0]))
|
471 |
+
else:
|
472 |
+
|
473 |
+
if((abs(box[0][0]-prev_x)>160) or abs(box[0][1]-prev_y)>160):
|
474 |
+
print(text)
|
475 |
+
print(box)
|
476 |
+
false_list.append(int(box[0][1]))
|
477 |
+
false_list_x.append(int(box[0][0]))
|
478 |
+
prev_y=box[0][1]
|
479 |
+
prev_x=box[0][0]
|
480 |
+
|
481 |
+
c+=1
|
482 |
+
|
483 |
+
cv2.rectangle(cons_boxes_image,(int(box[0][0]),int(box[0][1])),(int(box[2][0]),int(box[2][1])),(0,0,255),5)
|
484 |
+
cv2.putText(cons_boxes_image,text,(int(box[0][0]),int(box[0][1])),cv2.FONT_HERSHEY_SIMPLEX,4,(222,0,0),1)
|
485 |
+
|
486 |
+
print("the number dict is: ",numbers_dict)
|
487 |
+
print("the number dict x is: ",numbers_dict_x)
|
488 |
+
print("the true list is ",true_list)
|
489 |
+
print("the false list is ",false_list)
|
490 |
+
print("the true list for xdirn",true_list_x)
|
491 |
+
print("the false list for xdirn",false_list_x)
|
492 |
+
|
493 |
+
final_dict=assign_true_false_or_unknown_rotated(true_list,false_list,true_list_x,false_list_x,numbers_dict,numbers_dict_x,total_questions)
|
494 |
+
# Create a unique output file name
|
495 |
+
output_file_name = f'final_tf_{base_name}'
|
496 |
+
output_file_path = os.path.join(output_folder, output_file_name)
|
497 |
+
|
498 |
+
# Save the processed image
|
499 |
+
cv2.imwrite(output_file_path, cons_boxes_image)
|
500 |
+
|
501 |
+
|
502 |
+
|
503 |
+
|
504 |
+
return final_dict
|
505 |
+
|
506 |
+
|
507 |
+
|
508 |
+
|
509 |
+
|
510 |
+
def rotate(
|
511 |
+
image: np.ndarray, angle: float, background: Union[int, Tuple[int, int, int]]
|
512 |
+
) -> np.ndarray:
|
513 |
+
old_width, old_height = image.shape[:2]
|
514 |
+
angle_radian = math.radians(angle)
|
515 |
+
width = abs(np.sin(angle_radian) * old_height) + abs(np.cos(angle_radian) * old_width)
|
516 |
+
height = abs(np.sin(angle_radian) * old_width) + abs(np.cos(angle_radian) * old_height)
|
517 |
+
|
518 |
+
image_center = tuple(np.array(image.shape[1::-1]) / 2)
|
519 |
+
rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
|
520 |
+
rot_mat[1, 2] += (width - old_width) / 2
|
521 |
+
rot_mat[0, 2] += (height - old_height) / 2
|
522 |
+
return cv2.warpAffine(image, rot_mat, (int(round(height)), int(round(width))), borderValue=background)
|
523 |
+
|
524 |
+
def process_using_doctr_less_row_gap(boxes,texts,numbers_dict,num_l_x2,num_r_x2,image_path,total_questions):
|
525 |
+
print("the number dict in low gap",numbers_dict)
|
526 |
+
cons_boxes_image = cv2.imread(image_path)
|
527 |
+
true_list=[]
|
528 |
+
false_list=[]
|
529 |
+
c=0
|
530 |
+
print("starting with low row gap")
|
531 |
+
|
532 |
+
try:
|
533 |
+
for box, text in zip(boxes, texts):
|
534 |
+
box_bottom_right_x = int(box[1][0])
|
535 |
+
|
536 |
+
|
537 |
+
|
538 |
+
|
539 |
+
# Draw the adjusted bounding box
|
540 |
+
if (num_l_x2 <= box_bottom_right_x <= num_r_x2):
|
541 |
+
# print("entered in the t/f column ")
|
542 |
+
|
543 |
+
if label_text(text)==True and text!='TRUE/FALSE':
|
544 |
+
if(c==0):
|
545 |
+
print("first t/f detection")
|
546 |
+
print(text)
|
547 |
+
print(box)
|
548 |
+
prev=box[0][1]
|
549 |
+
prev_text=text
|
550 |
+
true_list.append(int(box[0][1]))
|
551 |
+
else:
|
552 |
+
|
553 |
+
if(abs(box[0][1]-prev)>20): #to avoid boxes in same row to overlap
|
554 |
+
print(text)
|
555 |
+
print(box)
|
556 |
+
true_list.append(int(box[0][1]))
|
557 |
+
prev=box[0][1]
|
558 |
+
prev_text=text
|
559 |
+
else:
|
560 |
+
print(f"collision happend with box:{prev} and text:{prev_text} solving on the basis of percent match boxes")
|
561 |
+
print("the current box specification are")
|
562 |
+
print(text)
|
563 |
+
print(box)
|
564 |
+
ans=percentMatch(prev_text,text)
|
565 |
+
if(ans==2):
|
566 |
+
|
567 |
+
if(label_text(prev_text)==False):
|
568 |
+
false_list.pop()
|
569 |
+
|
570 |
+
elif(label_text(prev_text)==True):
|
571 |
+
true_list.pop()
|
572 |
+
|
573 |
+
|
574 |
+
prev=box[0][1]
|
575 |
+
prev_text=text
|
576 |
+
true_list.append(int(prev))
|
577 |
+
|
578 |
+
|
579 |
+
|
580 |
+
|
581 |
+
c+=1
|
582 |
+
|
583 |
+
elif label_text(text)==False and text!='TRUE/FALSE':
|
584 |
+
if(c==0):
|
585 |
+
print("first t/f detection")
|
586 |
+
print(text)
|
587 |
+
print(box)
|
588 |
+
prev=box[0][1]
|
589 |
+
prev_text=text
|
590 |
+
false_list.append(int(box[0][1]))
|
591 |
+
else:
|
592 |
+
if(abs(box[0][1]-prev)>20):
|
593 |
+
print(text)
|
594 |
+
print(box)
|
595 |
+
false_list.append(int(box[0][1]))
|
596 |
+
prev=box[0][1]
|
597 |
+
prev_text=text
|
598 |
+
else:
|
599 |
+
print(f"collision happend with box:{prev} and text:{prev_text} solving on the basis of percent match boxes")
|
600 |
+
print("the current box specification are")
|
601 |
+
print(text)
|
602 |
+
print(box)
|
603 |
+
ans=percentMatch(prev_text,text)
|
604 |
+
|
605 |
+
if(ans==2):
|
606 |
+
|
607 |
+
if(label_text(prev_text)==False):
|
608 |
+
false_list.pop()
|
609 |
+
|
610 |
+
elif(label_text(prev_text)==True):
|
611 |
+
true_list.pop()
|
612 |
+
|
613 |
+
|
614 |
+
prev=box[0][1]
|
615 |
+
prev_text=text
|
616 |
+
false_list.append(int(prev))
|
617 |
+
c+=1
|
618 |
+
|
619 |
+
cv2.rectangle(cons_boxes_image,(int(box[0][0]),int(box[0][1])),(int(box[1][0]),int(box[1][1])),(0,0,255),5)
|
620 |
+
cv2.putText(cons_boxes_image,text,(int(box[0][0]),int(box[0][1])),cv2.FONT_HERSHEY_SIMPLEX,1,(222,0,0),1)
|
621 |
+
|
622 |
+
|
623 |
+
|
624 |
+
|
625 |
+
final_dict=assign_true_false_or_unknown(true_list,false_list,numbers_dict,total_questions)
|
626 |
+
|
627 |
+
return cons_boxes_image,final_dict
|
628 |
+
except Exception as e:
|
629 |
+
print("error occured")
|
630 |
+
print(e)
|
631 |
+
|
632 |
+
|
633 |
+
def process_and_save_image(image_path,actual_ans_csv ,output_folder , output_folder1):
|
634 |
+
|
635 |
+
base_name = os.path.basename(image_path)
|
636 |
+
image_cv = cv2.imread(image_path)
|
637 |
+
height = image_cv.shape[0]
|
638 |
+
width = image_cv.shape[1]
|
639 |
+
print("!------------------------------starting detection using doctr-----------------------------------!")
|
640 |
+
print("Started processing of the image :",base_name)
|
641 |
+
# print(image_width)
|
642 |
+
# output = ocr.ocr(image_path)[0]
|
643 |
+
|
644 |
+
# checking if header is there
|
645 |
+
with open(actual_ans_csv, 'r') as file:
|
646 |
+
first_line = file.readline().strip()
|
647 |
+
|
648 |
+
|
649 |
+
# Check if the first column of the first line is numeric
|
650 |
+
first_column_numeric = False
|
651 |
+
try:
|
652 |
+
first_value = float(first_line.split(',')[0]) # Assuming comma-separated values
|
653 |
+
first_column_numeric = True
|
654 |
+
except ValueError:
|
655 |
+
pass # If the first column cannot be converted to a float, it's not numeric
|
656 |
+
|
657 |
+
|
658 |
+
# Read the CSV file based on the condition
|
659 |
+
if first_column_numeric:
|
660 |
+
actualAns_df = pd.read_csv(actual_ans_csv, header=None)
|
661 |
+
else:
|
662 |
+
actualAns_df = pd.read_csv(actual_ans_csv)
|
663 |
+
|
664 |
+
total_questions = len(actualAns_df)
|
665 |
+
|
666 |
+
#checking skewness
|
667 |
+
grayscale = cv2.cvtColor(image_cv, cv2.COLOR_BGR2GRAY)
|
668 |
+
angle = determine_skew(grayscale)
|
669 |
+
image_cv = rotate(image_cv, angle, (0, 0, 0))
|
670 |
+
cv2.imwrite(image_path, image_cv)
|
671 |
+
|
672 |
+
|
673 |
+
single_img_doc = DocumentFile.from_images(image_path)
|
674 |
+
result = model(single_img_doc)
|
675 |
+
|
676 |
+
|
677 |
+
|
678 |
+
|
679 |
+
|
680 |
+
|
681 |
+
texts=[]
|
682 |
+
|
683 |
+
for page in result.pages:
|
684 |
+
for block in page.blocks:
|
685 |
+
for line in block.lines:
|
686 |
+
for word in line.words:
|
687 |
+
text = word.value
|
688 |
+
texts.append(text)
|
689 |
+
|
690 |
+
|
691 |
+
|
692 |
+
|
693 |
+
#checking for rotation
|
694 |
+
r_count=0
|
695 |
+
|
696 |
+
while('TRUE/FALSE' not in texts):
|
697 |
+
image_cv = cv2.rotate(image_cv, cv2.ROTATE_90_CLOCKWISE)
|
698 |
+
print("rotation started")
|
699 |
+
|
700 |
+
|
701 |
+
# Save the rotated image to a temporary path
|
702 |
+
# temp_image_path = 'temp_rotated_image.jpg'
|
703 |
+
cv2.imwrite(image_path, image_cv)
|
704 |
+
|
705 |
+
# output=ocr.ocr(temp_image_path)[0]
|
706 |
+
single_img_doc = DocumentFile.from_images(image_path)
|
707 |
+
result=model(single_img_doc)
|
708 |
+
texts=[]
|
709 |
+
for page in result.pages:
|
710 |
+
for block in page.blocks:
|
711 |
+
for line in block.lines:
|
712 |
+
for word in line.words:
|
713 |
+
text = word.value
|
714 |
+
texts.append(text)
|
715 |
+
|
716 |
+
print(texts)
|
717 |
+
r_count+=1
|
718 |
+
if r_count==4: #reaching the same orientation
|
719 |
+
break
|
720 |
+
|
721 |
+
|
722 |
+
|
723 |
+
if(r_count>0 and r_count!=4):
|
724 |
+
# cv2.imwrite(image_path,image_cv)
|
725 |
+
print("rotation done for: ",base_name)
|
726 |
+
print("Number of times rotation done:",r_count)
|
727 |
+
|
728 |
+
height = image_cv.shape[0]
|
729 |
+
width = image_cv.shape[1]
|
730 |
+
|
731 |
+
print("OCR detection done with doctr")
|
732 |
+
boxes=[]
|
733 |
+
# boxes = [line[0] for line in output]4
|
734 |
+
for page in result.pages:
|
735 |
+
for block in page.blocks:
|
736 |
+
for line in block.lines:
|
737 |
+
for word in line.words:
|
738 |
+
|
739 |
+
(x_min, y_min), (x_max, y_max) = word.geometry
|
740 |
+
|
741 |
+
x_min_px = x_min * width
|
742 |
+
y_min_px = y_min * height
|
743 |
+
x_max_px = x_max * width
|
744 |
+
y_max_px = y_max * height
|
745 |
+
|
746 |
+
bbox=(x_min_px, y_min_px), (x_max_px, y_max_px)
|
747 |
+
|
748 |
+
|
749 |
+
boxes.append(bbox)
|
750 |
+
|
751 |
+
image_boxes = image_cv.copy()
|
752 |
+
|
753 |
+
|
754 |
+
|
755 |
+
# print("!------------------------------all coordinates-----------------------------------!")
|
756 |
+
|
757 |
+
for box,text in zip(boxes,texts):
|
758 |
+
# print(text)
|
759 |
+
# print(box)
|
760 |
+
cv2.rectangle(image_boxes,(int(box[0][0]),int(box[0][1])),(int(box[1][0]),int(box[1][1])),(0,0,255),5) #needs top left and bottom right to draw bounding box
|
761 |
+
cv2.putText(image_boxes,text,(int(box[0][0]),int(box[0][1])),cv2.FONT_HERSHEY_SIMPLEX,4,(222,0,0),3)
|
762 |
+
|
763 |
+
|
764 |
+
# print("!------------------------------done with all coordinates-----------------------------------!")
|
765 |
+
|
766 |
+
|
767 |
+
|
768 |
+
alldet_file_name = f'detect_{base_name}'
|
769 |
+
alldet_file_path = os.path.join(output_folder1, alldet_file_name)
|
770 |
+
|
771 |
+
# Save the processed image
|
772 |
+
cv2.imwrite(alldet_file_path, image_boxes)
|
773 |
+
|
774 |
+
|
775 |
+
|
776 |
+
for box, text in zip(boxes, texts):
|
777 |
+
if text=="SN" or text=="NS":
|
778 |
+
num_l_x1=box[0][0]-100
|
779 |
+
num_r_x1=box[1][0]+140
|
780 |
+
|
781 |
+
print("left top x of SN:",num_l_x1)
|
782 |
+
print("bottom right x of SN:",num_r_x1)
|
783 |
+
|
784 |
+
|
785 |
+
if text=="TRUE/FALSE":
|
786 |
+
num_l_x2=box[0][0]-10
|
787 |
+
num_r_x2=box[1][0]+200
|
788 |
+
|
789 |
+
|
790 |
+
print("left top x of T/F:",num_l_x2)
|
791 |
+
print("bottom right x of T/F:",num_r_x2)
|
792 |
+
|
793 |
+
|
794 |
+
|
795 |
+
|
796 |
+
|
797 |
+
|
798 |
+
|
799 |
+
# Draw OCR bounding boxes within the final rectangle
|
800 |
+
cons_boxes_image=image_cv.copy()
|
801 |
+
true_list=[]
|
802 |
+
false_list=[]
|
803 |
+
|
804 |
+
|
805 |
+
|
806 |
+
numbers_dict={}
|
807 |
+
numbers_dict_x={}
|
808 |
+
c=0
|
809 |
+
|
810 |
+
|
811 |
+
no_of_collisions=0
|
812 |
+
|
813 |
+
try:
|
814 |
+
|
815 |
+
# this is for s/n column
|
816 |
+
for box, text in zip(boxes, texts):
|
817 |
+
# print(f"the text is : {text}")
|
818 |
+
|
819 |
+
|
820 |
+
box_top_left_x = int(box[0][0])
|
821 |
+
box_top_left_y=int(box[0][1])
|
822 |
+
box_bottom_right_x = int(box[1][0])
|
823 |
+
box_bottom_right_y = int(box[1][1])
|
824 |
+
|
825 |
+
|
826 |
+
|
827 |
+
# print(box_bottom_right_x)
|
828 |
+
# print(box_bottom_right_y)
|
829 |
+
# print(box_width_x)
|
830 |
+
# print(box_width_y)
|
831 |
+
|
832 |
+
|
833 |
+
|
834 |
+
if (num_l_x1 <= box_bottom_right_x <= num_r_x1 ):
|
835 |
+
if text.isdigit():
|
836 |
+
number = int(text)
|
837 |
+
if 1 <= number <= total_questions+1:
|
838 |
+
# Store in dictionaries only if the number is between 1 and 10
|
839 |
+
numbers_dict[text] = int(box[0][1])
|
840 |
+
print(text)
|
841 |
+
print(box)
|
842 |
+
# Visualize the rectangle and text on the image (optional)
|
843 |
+
cv2.rectangle(cons_boxes_image, (int(box[0][0]), int(box[0][1])), (int(box[1][0]), int(box[1][1])), (0, 0, 255), 5)
|
844 |
+
cv2.putText(cons_boxes_image, text, (int(box[0][0]), int(box[0][1])), cv2.FONT_HERSHEY_SIMPLEX, 1, (222, 0, 0), 1)
|
845 |
+
|
846 |
+
|
847 |
+
|
848 |
+
|
849 |
+
|
850 |
+
|
851 |
+
|
852 |
+
|
853 |
+
|
854 |
+
|
855 |
+
prev=0
|
856 |
+
|
857 |
+
|
858 |
+
|
859 |
+
for box, text in zip(boxes, texts):
|
860 |
+
|
861 |
+
|
862 |
+
|
863 |
+
box_bottom_right_x = int(box[1][0])
|
864 |
+
|
865 |
+
if(no_of_collisions>4):
|
866 |
+
break
|
867 |
+
|
868 |
+
# Draw the adjusted bounding box
|
869 |
+
if (num_l_x2 <= box_bottom_right_x <= num_r_x2):
|
870 |
+
# print("entered in the t/f column ")
|
871 |
+
|
872 |
+
if label_text(text)==True and text!='TRUE/FALSE':
|
873 |
+
if(c==0):
|
874 |
+
print("first t/f detection")
|
875 |
+
print(text)
|
876 |
+
print(box)
|
877 |
+
prev=box[0][1]
|
878 |
+
prev_text=text
|
879 |
+
true_list.append(int(box[0][1]))
|
880 |
+
else:
|
881 |
+
|
882 |
+
if(abs(box[0][1]-prev)>200): #to avoid boxes in same row to overlap
|
883 |
+
print(text)
|
884 |
+
print(box)
|
885 |
+
true_list.append(int(box[0][1]))
|
886 |
+
prev=box[0][1]
|
887 |
+
prev_text=text
|
888 |
+
else:
|
889 |
+
print(f"collision happend with box:{prev} and text:{prev_text} solving on the basis of percent match boxes")
|
890 |
+
print("the current box specification are")
|
891 |
+
print(text)
|
892 |
+
print(box)
|
893 |
+
no_of_collisions+=1
|
894 |
+
ans=percentMatch(prev_text,text)
|
895 |
+
if(ans==2):
|
896 |
+
|
897 |
+
if(label_text(prev_text)==False):
|
898 |
+
false_list.pop()
|
899 |
+
|
900 |
+
elif(label_text(prev_text)==True):
|
901 |
+
true_list.pop()
|
902 |
+
|
903 |
+
|
904 |
+
prev=box[0][1]
|
905 |
+
prev_text=text
|
906 |
+
true_list.append(int(prev))
|
907 |
+
|
908 |
+
|
909 |
+
|
910 |
+
|
911 |
+
c+=1
|
912 |
+
|
913 |
+
elif label_text(text)==False and text!='TRUE/FALSE':
|
914 |
+
if(c==0):
|
915 |
+
print("first t/f detection")
|
916 |
+
print(text)
|
917 |
+
print(box)
|
918 |
+
prev=box[0][1]
|
919 |
+
prev_text=text
|
920 |
+
false_list.append(int(box[0][1]))
|
921 |
+
else:
|
922 |
+
if(abs(box[0][1]-prev)>200):
|
923 |
+
print(text)
|
924 |
+
print(box)
|
925 |
+
false_list.append(int(box[0][1]))
|
926 |
+
prev=box[0][1]
|
927 |
+
prev_text=text
|
928 |
+
else:
|
929 |
+
print(f"collision happend with box:{prev} and text:{prev_text} solving on the basis of percent match boxes")
|
930 |
+
print("the current box specification are")
|
931 |
+
print(text)
|
932 |
+
print(box)
|
933 |
+
no_of_collisions+=1
|
934 |
+
ans=percentMatch(prev_text,text)
|
935 |
+
|
936 |
+
if(ans==2):
|
937 |
+
|
938 |
+
if(label_text(prev_text)==False):
|
939 |
+
false_list.pop()
|
940 |
+
|
941 |
+
elif(label_text(prev_text)==True):
|
942 |
+
true_list.pop()
|
943 |
+
|
944 |
+
|
945 |
+
prev=box[0][1]
|
946 |
+
prev_text=text
|
947 |
+
false_list.append(int(prev))
|
948 |
+
c+=1
|
949 |
+
|
950 |
+
cv2.rectangle(cons_boxes_image,(int(box[0][0]),int(box[0][1])),(int(box[1][0]),int(box[1][1])),(0,0,255),5)
|
951 |
+
cv2.putText(cons_boxes_image,text,(int(box[0][0]),int(box[0][1])),cv2.FONT_HERSHEY_SIMPLEX,1,(222,0,0),1)
|
952 |
+
|
953 |
+
|
954 |
+
if(no_of_collisions<=4):
|
955 |
+
final_dict=assign_true_false_or_unknown(true_list,false_list,numbers_dict,total_questions)
|
956 |
+
|
957 |
+
else:
|
958 |
+
print("going with doctr less gap")
|
959 |
+
cons_boxes_image,final_dict=process_using_doctr_less_row_gap(boxes,texts,numbers_dict,num_l_x2,num_r_x2,image_path,total_questions)
|
960 |
+
|
961 |
+
|
962 |
+
|
963 |
+
# Create a unique output file name
|
964 |
+
output_file_name = f'final_tf_{base_name}'
|
965 |
+
output_file_path = os.path.join(output_folder, output_file_name)
|
966 |
+
|
967 |
+
# Save the processed image
|
968 |
+
cv2.imwrite(output_file_path, cons_boxes_image)
|
969 |
+
|
970 |
+
|
971 |
+
print("printing the number dict y_coordinate")
|
972 |
+
print(numbers_dict)
|
973 |
+
|
974 |
+
|
975 |
+
|
976 |
+
|
977 |
+
|
978 |
+
except NameError:
|
979 |
+
|
980 |
+
print("TRUE/FALSE not detected. Skipping this part of processing.")
|
981 |
+
print("going with paddleocr")
|
982 |
+
|
983 |
+
final_dict=process_using_paddleocr(image_path,output_folder,output_folder1,total_questions)
|
984 |
+
|
985 |
+
|
986 |
+
|
987 |
+
|
988 |
+
|
989 |
+
|
990 |
+
|
991 |
+
|
992 |
+
|
993 |
+
|
994 |
+
|
995 |
+
|
996 |
+
print("--------- Printing the final dict ------------")
|
997 |
+
print(final_dict)
|
998 |
+
|
999 |
+
df=pd.DataFrame(final_dict.items(),columns=['Q_No.','True/False'])
|
1000 |
+
|
1001 |
+
|
1002 |
+
# predcsv_file_name = f'answers_{base_name}.csv'
|
1003 |
+
|
1004 |
+
# predcsv_file_path = os.path.join(output_folder, predcsv_file_name)
|
1005 |
+
# df.to_csv(predcsv_file_path,index=False)
|
1006 |
+
|
1007 |
+
|
1008 |
+
# print(f'DataFrame saved to {predcsv_file_path}')
|
1009 |
+
|
1010 |
+
|
1011 |
+
|
1012 |
+
|
1013 |
+
|
1014 |
+
|
1015 |
+
|
1016 |
+
|
1017 |
+
|
1018 |
+
# predictions_file_path='pred_output.csv'
|
1019 |
+
# reading the answers and evaluting
|
1020 |
+
|
1021 |
+
|
1022 |
+
marks=0
|
1023 |
+
w_ans=[]
|
1024 |
+
m_ans=[]
|
1025 |
+
|
1026 |
+
for index, row in actualAns_df.iterrows():
|
1027 |
+
question_number = str(row.iloc[0]) # Accessing the first column by index
|
1028 |
+
answer = row.iloc[1] # Accessing the second column by index
|
1029 |
+
# print(answer)
|
1030 |
+
if final_dict[question_number]==answer:
|
1031 |
+
marks += 1
|
1032 |
+
elif final_dict[question_number] not in ("NULL", "UNASSIGNED"):
|
1033 |
+
w_ans.append(question_number)
|
1034 |
+
else:
|
1035 |
+
m_ans.append(question_number)
|
1036 |
+
|
1037 |
+
|
1038 |
+
print("Total Marks:", marks)
|
1039 |
+
|
1040 |
+
image_name = base_name #Replace this with the actual image name
|
1041 |
+
marks_df = pd.DataFrame({"Filename": [image_name], "Marks": [marks]})
|
1042 |
+
|
1043 |
+
# Append the marks DataFrame to the predictions file
|
1044 |
+
# marks_df.to_csv(predictions_file_path, mode='a', header=False, index=False)
|
1045 |
+
output_text = f"Marks: {marks} out of {total_questions}"
|
1046 |
+
|
1047 |
+
if w_ans:
|
1048 |
+
output_text += f" and the following were wrong_answers: {w_ans}"
|
1049 |
+
|
1050 |
+
if m_ans and w_ans:
|
1051 |
+
output_text += f" and missed_questions: {m_ans}"
|
1052 |
+
|
1053 |
+
if m_ans and len(w_ans)==0:
|
1054 |
+
output_text += f" and the following were missed_answers: {m_ans}"
|
1055 |
+
|
1056 |
+
print(output_text)
|
1057 |
+
|
1058 |
+
return output_text
|
1059 |
+
|
1060 |
+
|
1061 |
+
|
1062 |
+
import gradio as gr
|
1063 |
+
|
1064 |
+
|
1065 |
+
output_folder = "test_gradio/output"
|
1066 |
+
output_folder1 = "test_gradio/detection"
|
1067 |
+
|
1068 |
+
# actual_ans_csv = "test_gradio/ModelAnswer.csv"
|
1069 |
+
|
1070 |
+
demo_image_paths = [
|
1071 |
+
"test_gradio/samples/1zHXQVK.jpg",
|
1072 |
+
"test_gradio/samples/9X9qVWN.jpg",
|
1073 |
+
"test_gradio/samples/LRccyJJ.jpg"
|
1074 |
+
|
1075 |
+
|
1076 |
+
]
|
1077 |
+
|
1078 |
+
demo_csv_path = "test_gradio/answerKey.csv"
|
1079 |
+
|
1080 |
+
# Define the Gradio interface
|
1081 |
+
demo = gr.Interface(
|
1082 |
+
fn=lambda img_path, csv_path: process_and_save_image(img_path, csv_path, output_folder, output_folder1),
|
1083 |
+
inputs=[gr.Image(type='filepath',label="Upload Image of your answer_sheet"),
|
1084 |
+
gr.File(type='filepath',label="Upload the Answer Key in csv file")],
|
1085 |
+
outputs=[gr.Textbox(label=f"Predicted Marks")],
|
1086 |
+
title="AutoEval for True/False AnswerSheet",
|
1087 |
+
examples=[
|
1088 |
+
[demo_image_paths[0], demo_csv_path],
|
1089 |
+
[demo_image_paths[1], demo_csv_path],
|
1090 |
+
[demo_image_paths[2], demo_csv_path]
|
1091 |
+
]
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
# Launch the Gradio app
|
1095 |
+
demo.launch()
|