# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. import os from typing import Any, Dict, List, Tuple, Union import h5py import numpy as np from tqdm import tqdm from .datasets import VisionDataset from .utils import convert_target_to_relative, crop_bboxes_from_image __all__ = ["SVHN"] class SVHN(VisionDataset): """SVHN dataset from `"The Street View House Numbers (SVHN) Dataset" `_. .. image:: https://doctr-static.mindee.com/models?id=v0.5.0/svhn-grid.png&src=0 :align: center >>> from doctr.datasets import SVHN >>> train_set = SVHN(train=True, download=True) >>> img, target = train_set[0] Args: ---- train: whether the subset should be the training one use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) recognition_task: whether the dataset should be used for recognition task **kwargs: keyword arguments from `VisionDataset`. """ TRAIN = ( "http://ufldl.stanford.edu/housenumbers/train.tar.gz", "4b17bb33b6cd8f963493168f80143da956f28ec406cc12f8e5745a9f91a51898", "svhn_train.tar", ) TEST = ( "http://ufldl.stanford.edu/housenumbers/test.tar.gz", "57ac9ceb530e4aa85b55d991be8fc49c695b3d71c6f6a88afea86549efde7fb5", "svhn_test.tar", ) def __init__( self, train: bool = True, use_polygons: bool = False, recognition_task: bool = False, **kwargs: Any, ) -> None: url, sha256, name = self.TRAIN if train else self.TEST super().__init__( url, file_name=name, file_hash=sha256, extract_archive=True, pre_transforms=convert_target_to_relative if not recognition_task else None, **kwargs, ) self.train = train self.data: List[Tuple[Union[str, np.ndarray], Union[str, Dict[str, Any]]]] = [] np_dtype = np.float32 tmp_root = os.path.join(self.root, "train" if train else "test") # Load mat data (matlab v7.3 - can not be loaded with scipy) with h5py.File(os.path.join(tmp_root, "digitStruct.mat"), "r") as f: img_refs = f["digitStruct/name"] box_refs = f["digitStruct/bbox"] for img_ref, box_ref in tqdm(iterable=zip(img_refs, box_refs), desc="Unpacking SVHN", total=len(img_refs)): # convert ascii matrix to string img_name = "".join(map(chr, f[img_ref[0]][()].flatten())) # File existence check if not os.path.exists(os.path.join(tmp_root, img_name)): raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, img_name)}") # Unpack the information box = f[box_ref[0]] if box["left"].shape[0] == 1: box_dict = {k: [int(vals[0][0])] for k, vals in box.items()} else: box_dict = {k: [int(f[v[0]][()].item()) for v in vals] for k, vals in box.items()} # Convert it to the right format coords: np.ndarray = np.array( [box_dict["left"], box_dict["top"], box_dict["width"], box_dict["height"]], dtype=np_dtype ).transpose() label_targets = list(map(str, box_dict["label"])) if use_polygons: # (x, y) coordinates of top left, top right, bottom right, bottom left corners box_targets: np.ndarray = np.stack( [ np.stack([coords[:, 0], coords[:, 1]], axis=-1), np.stack([coords[:, 0] + coords[:, 2], coords[:, 1]], axis=-1), np.stack([coords[:, 0] + coords[:, 2], coords[:, 1] + coords[:, 3]], axis=-1), np.stack([coords[:, 0], coords[:, 1] + coords[:, 3]], axis=-1), ], axis=1, ) else: # x, y, width, height -> xmin, ymin, xmax, ymax box_targets = np.stack( [ coords[:, 0], coords[:, 1], coords[:, 0] + coords[:, 2], coords[:, 1] + coords[:, 3], ], axis=-1, ) if recognition_task: crops = crop_bboxes_from_image(img_path=os.path.join(tmp_root, img_name), geoms=box_targets) for crop, label in zip(crops, label_targets): if crop.shape[0] > 0 and crop.shape[1] > 0 and len(label) > 0: self.data.append((crop, label)) else: self.data.append((img_name, dict(boxes=box_targets, labels=label_targets))) self.root = tmp_root def extra_repr(self) -> str: return f"train={self.train}"