# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. # Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.applications import ResNet50 from doctr.file_utils import CLASS_NAME from doctr.models.utils import IntermediateLayerGetter, _bf16_to_float32, conv_sequence, load_pretrained_params from doctr.utils.repr import NestedObject from ...classification import mobilenet_v3_large from .base import DBPostProcessor, _DBNet __all__ = ["DBNet", "db_resnet50", "db_mobilenet_v3_large"] default_cfgs: Dict[str, Dict[str, Any]] = { "db_resnet50": { "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "input_shape": (1024, 1024, 3), "url": "https://doctr-static.mindee.com/models?id=v0.7.0/db_resnet50-84171458.zip&src=0", }, "db_mobilenet_v3_large": { "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "input_shape": (1024, 1024, 3), "url": "https://doctr-static.mindee.com/models?id=v0.7.0/db_mobilenet_v3_large-da524564.zip&src=0", }, } class FeaturePyramidNetwork(layers.Layer, NestedObject): """Feature Pyramid Network as described in `"Feature Pyramid Networks for Object Detection" `_. Args: ---- channels: number of channel to output """ def __init__( self, channels: int, ) -> None: super().__init__() self.channels = channels self.upsample = layers.UpSampling2D(size=(2, 2), interpolation="nearest") self.inner_blocks = [layers.Conv2D(channels, 1, strides=1, kernel_initializer="he_normal") for _ in range(4)] self.layer_blocks = [self.build_upsampling(channels, dilation_factor=2**idx) for idx in range(4)] @staticmethod def build_upsampling( channels: int, dilation_factor: int = 1, ) -> layers.Layer: """Module which performs a 3x3 convolution followed by up-sampling Args: ---- channels: number of output channels dilation_factor (int): dilation factor to scale the convolution output before concatenation Returns: ------- a keras.layers.Layer object, wrapping these operations in a sequential module """ _layers = conv_sequence(channels, "relu", True, kernel_size=3) if dilation_factor > 1: _layers.append(layers.UpSampling2D(size=(dilation_factor, dilation_factor), interpolation="nearest")) module = keras.Sequential(_layers) return module def extra_repr(self) -> str: return f"channels={self.channels}" def call( self, x: List[tf.Tensor], **kwargs: Any, ) -> tf.Tensor: # Channel mapping results = [block(fmap, **kwargs) for block, fmap in zip(self.inner_blocks, x)] # Upsample & sum for idx in range(len(results) - 1, -1): results[idx] += self.upsample(results[idx + 1]) # Conv & upsample results = [block(fmap, **kwargs) for block, fmap in zip(self.layer_blocks, results)] return layers.concatenate(results) class DBNet(_DBNet, keras.Model, NestedObject): """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" `_. Args: ---- feature extractor: the backbone serving as feature extractor fpn_channels: number of channels each extracted feature maps is mapped to bin_thresh: threshold for binarization box_thresh: minimal objectness score to consider a box assume_straight_pages: if True, fit straight bounding boxes only exportable: onnx exportable returns only logits cfg: the configuration dict of the model class_names: list of class names """ _children_names: List[str] = ["feat_extractor", "fpn", "probability_head", "threshold_head", "postprocessor"] def __init__( self, feature_extractor: IntermediateLayerGetter, fpn_channels: int = 128, # to be set to 256 to represent the author's initial idea bin_thresh: float = 0.3, box_thresh: float = 0.1, assume_straight_pages: bool = True, exportable: bool = False, cfg: Optional[Dict[str, Any]] = None, class_names: List[str] = [CLASS_NAME], ) -> None: super().__init__() self.class_names = class_names num_classes: int = len(self.class_names) self.cfg = cfg self.feat_extractor = feature_extractor self.exportable = exportable self.assume_straight_pages = assume_straight_pages self.fpn = FeaturePyramidNetwork(channels=fpn_channels) # Initialize kernels _inputs = [layers.Input(shape=in_shape[1:]) for in_shape in self.feat_extractor.output_shape] output_shape = tuple(self.fpn(_inputs).shape) self.probability_head = keras.Sequential([ *conv_sequence(64, "relu", True, kernel_size=3, input_shape=output_shape[1:]), layers.Conv2DTranspose(64, 2, strides=2, use_bias=False, kernel_initializer="he_normal"), layers.BatchNormalization(), layers.Activation("relu"), layers.Conv2DTranspose(num_classes, 2, strides=2, kernel_initializer="he_normal"), ]) self.threshold_head = keras.Sequential([ *conv_sequence(64, "relu", True, kernel_size=3, input_shape=output_shape[1:]), layers.Conv2DTranspose(64, 2, strides=2, use_bias=False, kernel_initializer="he_normal"), layers.BatchNormalization(), layers.Activation("relu"), layers.Conv2DTranspose(num_classes, 2, strides=2, kernel_initializer="he_normal"), ]) self.postprocessor = DBPostProcessor( assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh ) def compute_loss( self, out_map: tf.Tensor, thresh_map: tf.Tensor, target: List[Dict[str, np.ndarray]], gamma: float = 2.0, alpha: float = 0.5, eps: float = 1e-8, ) -> tf.Tensor: """Compute a batch of gts, masks, thresh_gts, thresh_masks from a list of boxes and a list of masks for each image. From there it computes the loss with the model output Args: ---- out_map: output feature map of the model of shape (N, H, W, C) thresh_map: threshold map of shape (N, H, W, C) target: list of dictionary where each dict has a `boxes` and a `flags` entry gamma: modulating factor in the focal loss formula alpha: balancing factor in the focal loss formula eps: epsilon factor in dice loss Returns: ------- A loss tensor """ if gamma < 0: raise ValueError("Value of gamma should be greater than or equal to zero.") prob_map = tf.math.sigmoid(out_map) thresh_map = tf.math.sigmoid(thresh_map) seg_target, seg_mask, thresh_target, thresh_mask = self.build_target(target, out_map.shape[1:], True) seg_target = tf.convert_to_tensor(seg_target, dtype=out_map.dtype) seg_mask = tf.convert_to_tensor(seg_mask, dtype=tf.bool) seg_mask = tf.cast(seg_mask, tf.float32) thresh_target = tf.convert_to_tensor(thresh_target, dtype=out_map.dtype) thresh_mask = tf.convert_to_tensor(thresh_mask, dtype=tf.bool) # Focal loss focal_scale = 10.0 bce_loss = tf.keras.losses.binary_crossentropy(seg_target[..., None], out_map[..., None], from_logits=True) # Convert logits to prob, compute gamma factor p_t = (seg_target * prob_map) + ((1 - seg_target) * (1 - prob_map)) alpha_t = seg_target * alpha + (1 - seg_target) * (1 - alpha) # Unreduced loss focal_loss = alpha_t * (1 - p_t) ** gamma * bce_loss # Class reduced focal_loss = tf.reduce_sum(seg_mask * focal_loss, (0, 1, 2, 3)) / tf.reduce_sum(seg_mask, (0, 1, 2, 3)) # Compute dice loss for each class or for approx binary_map if len(self.class_names) > 1: dice_map = tf.nn.softmax(out_map, axis=-1) else: # compute binary map instead dice_map = 1.0 / (1.0 + tf.exp(-50 * (prob_map - thresh_map))) # Class-reduced dice loss inter = tf.reduce_sum(seg_mask * dice_map * seg_target, axis=[0, 1, 2]) cardinality = tf.reduce_sum(seg_mask * (dice_map + seg_target), axis=[0, 1, 2]) dice_loss = tf.reduce_mean(1 - 2 * inter / (cardinality + eps)) # Compute l1 loss for thresh_map if tf.reduce_any(thresh_mask): thresh_mask = tf.cast(thresh_mask, tf.float32) l1_loss = tf.reduce_sum(tf.abs(thresh_map - thresh_target) * thresh_mask) / ( tf.reduce_sum(thresh_mask) + eps ) else: l1_loss = tf.constant(0.0) return l1_loss + focal_scale * focal_loss + dice_loss def call( self, x: tf.Tensor, target: Optional[List[Dict[str, np.ndarray]]] = None, return_model_output: bool = False, return_preds: bool = False, **kwargs: Any, ) -> Dict[str, Any]: feat_maps = self.feat_extractor(x, **kwargs) feat_concat = self.fpn(feat_maps, **kwargs) logits = self.probability_head(feat_concat, **kwargs) out: Dict[str, tf.Tensor] = {} if self.exportable: out["logits"] = logits return out if return_model_output or target is None or return_preds: prob_map = _bf16_to_float32(tf.math.sigmoid(logits)) if return_model_output: out["out_map"] = prob_map if target is None or return_preds: # Post-process boxes (keep only text predictions) out["preds"] = [dict(zip(self.class_names, preds)) for preds in self.postprocessor(prob_map.numpy())] if target is not None: thresh_map = self.threshold_head(feat_concat, **kwargs) loss = self.compute_loss(logits, thresh_map, target) out["loss"] = loss return out def _db_resnet( arch: str, pretrained: bool, backbone_fn, fpn_layers: List[str], pretrained_backbone: bool = True, input_shape: Optional[Tuple[int, int, int]] = None, **kwargs: Any, ) -> DBNet: pretrained_backbone = pretrained_backbone and not pretrained # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["input_shape"] = input_shape or _cfg["input_shape"] if not kwargs.get("class_names", None): kwargs["class_names"] = _cfg.get("class_names", [CLASS_NAME]) else: kwargs["class_names"] = sorted(kwargs["class_names"]) # Feature extractor feat_extractor = IntermediateLayerGetter( backbone_fn( weights="imagenet" if pretrained_backbone else None, include_top=False, pooling=None, input_shape=_cfg["input_shape"], ), fpn_layers, ) # Build the model model = DBNet(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: load_pretrained_params(model, _cfg["url"]) return model def _db_mobilenet( arch: str, pretrained: bool, backbone_fn, fpn_layers: List[str], pretrained_backbone: bool = True, input_shape: Optional[Tuple[int, int, int]] = None, **kwargs: Any, ) -> DBNet: pretrained_backbone = pretrained_backbone and not pretrained # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["input_shape"] = input_shape or _cfg["input_shape"] # Feature extractor feat_extractor = IntermediateLayerGetter( backbone_fn( input_shape=_cfg["input_shape"], include_top=False, pretrained=pretrained_backbone, ), fpn_layers, ) # Build the model model = DBNet(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: load_pretrained_params(model, _cfg["url"]) return model def db_resnet50(pretrained: bool = False, **kwargs: Any) -> DBNet: """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" `_, using a ResNet-50 backbone. >>> import tensorflow as tf >>> from doctr.models import db_resnet50 >>> model = db_resnet50(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained (bool): If True, returns a model pre-trained on our text detection dataset **kwargs: keyword arguments of the DBNet architecture Returns: ------- text detection architecture """ return _db_resnet( "db_resnet50", pretrained, ResNet50, ["conv2_block3_out", "conv3_block4_out", "conv4_block6_out", "conv5_block3_out"], **kwargs, ) def db_mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) -> DBNet: """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" `_, using a mobilenet v3 large backbone. >>> import tensorflow as tf >>> from doctr.models import db_mobilenet_v3_large >>> model = db_mobilenet_v3_large(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained (bool): If True, returns a model pre-trained on our text detection dataset **kwargs: keyword arguments of the DBNet architecture Returns: ------- text detection architecture """ return _db_mobilenet( "db_mobilenet_v3_large", pretrained, mobilenet_v3_large, ["inverted_2", "inverted_5", "inverted_11", "final_block"], **kwargs, )