# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. import math from typing import Any, Callable, Optional, Tuple import tensorflow as tf from tensorflow.keras import layers from doctr.utils.repr import NestedObject __all__ = ["Decoder", "PositionalEncoding", "EncoderBlock", "PositionwiseFeedForward", "MultiHeadAttention"] tf.config.run_functions_eagerly(True) class PositionalEncoding(layers.Layer, NestedObject): """Compute positional encoding""" def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000) -> None: super(PositionalEncoding, self).__init__() self.dropout = layers.Dropout(rate=dropout) # Compute the positional encodings once in log space. pe = tf.Variable(tf.zeros((max_len, d_model))) position = tf.cast( tf.expand_dims(tf.experimental.numpy.arange(start=0, stop=max_len), axis=1), dtype=tf.float32 ) div_term = tf.math.exp( tf.cast(tf.experimental.numpy.arange(start=0, stop=d_model, step=2), dtype=tf.float32) * -(math.log(10000.0) / d_model) ) pe = pe.numpy() pe[:, 0::2] = tf.math.sin(position * div_term) pe[:, 1::2] = tf.math.cos(position * div_term) self.pe = tf.expand_dims(tf.convert_to_tensor(pe), axis=0) def call( self, x: tf.Tensor, **kwargs: Any, ) -> tf.Tensor: """Forward pass Args: ---- x: embeddings (batch, max_len, d_model) **kwargs: additional arguments Returns ------- positional embeddings (batch, max_len, d_model) """ if x.dtype == tf.float16: # amp fix: cast to half x = x + tf.cast(self.pe[:, : x.shape[1]], dtype=tf.half) else: x = x + self.pe[:, : x.shape[1]] return self.dropout(x, **kwargs) @tf.function def scaled_dot_product_attention( query: tf.Tensor, key: tf.Tensor, value: tf.Tensor, mask: Optional[tf.Tensor] = None ) -> Tuple[tf.Tensor, tf.Tensor]: """Scaled Dot-Product Attention""" scores = tf.matmul(query, tf.transpose(key, perm=[0, 1, 3, 2])) / math.sqrt(query.shape[-1]) if mask is not None: # NOTE: to ensure the ONNX compatibility, tf.where works only with bool type condition scores = tf.where(mask == False, float("-inf"), scores) # noqa: E712 p_attn = tf.nn.softmax(scores, axis=-1) return tf.matmul(p_attn, value), p_attn class PositionwiseFeedForward(layers.Layer, NestedObject): """Position-wise Feed-Forward Network""" def __init__( self, d_model: int, ffd: int, dropout=0.1, activation_fct: Callable[[Any], Any] = layers.ReLU() ) -> None: super(PositionwiseFeedForward, self).__init__() self.activation_fct = activation_fct self.first_linear = layers.Dense(ffd, kernel_initializer=tf.initializers.he_uniform()) self.sec_linear = layers.Dense(d_model, kernel_initializer=tf.initializers.he_uniform()) self.dropout = layers.Dropout(rate=dropout) def call(self, x: tf.Tensor, **kwargs: Any) -> tf.Tensor: x = self.first_linear(x, **kwargs) x = self.activation_fct(x) x = self.dropout(x, **kwargs) x = self.sec_linear(x, **kwargs) x = self.dropout(x, **kwargs) return x class MultiHeadAttention(layers.Layer, NestedObject): """Multi-Head Attention""" def __init__(self, num_heads: int, d_model: int, dropout: float = 0.1) -> None: super().__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" self.d_k = d_model // num_heads self.num_heads = num_heads self.linear_layers = [layers.Dense(d_model, kernel_initializer=tf.initializers.he_uniform()) for _ in range(3)] self.output_linear = layers.Dense(d_model, kernel_initializer=tf.initializers.he_uniform()) def call( self, query: tf.Tensor, key: tf.Tensor, value: tf.Tensor, mask: tf.Tensor = None, **kwargs: Any, ) -> tf.Tensor: batch_size = query.shape[0] # linear projections of Q, K, V query, key, value = [ tf.transpose( tf.reshape(linear(x, **kwargs), shape=[batch_size, -1, self.num_heads, self.d_k]), perm=[0, 2, 1, 3] ) for linear, x in zip(self.linear_layers, (query, key, value)) ] # apply attention on all the projected vectors in batch x, attn = scaled_dot_product_attention(query, key, value, mask=mask) # Concat attention heads x = tf.transpose(x, perm=[0, 2, 1, 3]) x = tf.reshape(x, shape=[batch_size, -1, self.num_heads * self.d_k]) return self.output_linear(x, **kwargs) class EncoderBlock(layers.Layer, NestedObject): """Transformer Encoder Block""" def __init__( self, num_layers: int, num_heads: int, d_model: int, dff: int, # hidden dimension of the feedforward network dropout: float, activation_fct: Callable[[Any], Any] = layers.ReLU(), ) -> None: super().__init__() self.num_layers = num_layers self.layer_norm_input = layers.LayerNormalization(epsilon=1e-5) self.layer_norm_attention = layers.LayerNormalization(epsilon=1e-5) self.layer_norm_output = layers.LayerNormalization(epsilon=1e-5) self.dropout = layers.Dropout(rate=dropout) self.attention = [MultiHeadAttention(num_heads, d_model, dropout) for _ in range(self.num_layers)] self.position_feed_forward = [ PositionwiseFeedForward(d_model, dff, dropout, activation_fct) for _ in range(self.num_layers) ] def call(self, x: tf.Tensor, mask: Optional[tf.Tensor] = None, **kwargs: Any) -> tf.Tensor: output = x for i in range(self.num_layers): normed_output = self.layer_norm_input(output, **kwargs) output = output + self.dropout( self.attention[i](normed_output, normed_output, normed_output, mask, **kwargs), **kwargs, ) normed_output = self.layer_norm_attention(output, **kwargs) output = output + self.dropout(self.position_feed_forward[i](normed_output, **kwargs), **kwargs) # (batch_size, seq_len, d_model) return self.layer_norm_output(output, **kwargs) class Decoder(layers.Layer, NestedObject): """Transformer Decoder""" def __init__( self, num_layers: int, num_heads: int, d_model: int, vocab_size: int, dropout: float = 0.2, dff: int = 2048, # hidden dimension of the feedforward network maximum_position_encoding: int = 50, ) -> None: super(Decoder, self).__init__() self.num_layers = num_layers self.d_model = d_model self.layer_norm_input = layers.LayerNormalization(epsilon=1e-5) self.layer_norm_masked_attention = layers.LayerNormalization(epsilon=1e-5) self.layer_norm_attention = layers.LayerNormalization(epsilon=1e-5) self.layer_norm_output = layers.LayerNormalization(epsilon=1e-5) self.dropout = layers.Dropout(rate=dropout) self.embed = layers.Embedding(vocab_size, d_model) self.positional_encoding = PositionalEncoding(d_model, dropout, maximum_position_encoding) self.attention = [MultiHeadAttention(num_heads, d_model, dropout) for _ in range(self.num_layers)] self.source_attention = [MultiHeadAttention(num_heads, d_model, dropout) for _ in range(self.num_layers)] self.position_feed_forward = [PositionwiseFeedForward(d_model, dff, dropout) for _ in range(self.num_layers)] def call( self, tgt: tf.Tensor, memory: tf.Tensor, source_mask: Optional[tf.Tensor] = None, target_mask: Optional[tf.Tensor] = None, **kwargs: Any, ) -> tf.Tensor: tgt = self.embed(tgt, **kwargs) * math.sqrt(self.d_model) pos_enc_tgt = self.positional_encoding(tgt, **kwargs) output = pos_enc_tgt for i in range(self.num_layers): normed_output = self.layer_norm_input(output, **kwargs) output = output + self.dropout( self.attention[i](normed_output, normed_output, normed_output, target_mask, **kwargs), **kwargs, ) normed_output = self.layer_norm_masked_attention(output, **kwargs) output = output + self.dropout( self.source_attention[i](normed_output, memory, memory, source_mask, **kwargs), **kwargs, ) normed_output = self.layer_norm_attention(output, **kwargs) output = output + self.dropout(self.position_feed_forward[i](normed_output, **kwargs), **kwargs) # (batch_size, seq_len, d_model) return self.layer_norm_output(output, **kwargs)