# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. from typing import Tuple, Union import cv2 import numpy as np from doctr.utils.geometry import rotate_abs_geoms __all__ = ["crop_boxes", "create_shadow_mask"] def crop_boxes( boxes: np.ndarray, crop_box: Union[Tuple[int, int, int, int], Tuple[float, float, float, float]], ) -> np.ndarray: """Crop localization boxes Args: ---- boxes: ndarray of shape (N, 4) in relative or abs coordinates crop_box: box (xmin, ymin, xmax, ymax) to crop the image, in the same coord format that the boxes Returns: ------- the cropped boxes """ is_box_rel = boxes.max() <= 1 is_crop_rel = max(crop_box) <= 1 if is_box_rel ^ is_crop_rel: raise AssertionError("both the boxes and the crop need to have the same coordinate convention") xmin, ymin, xmax, ymax = crop_box # Clip boxes & correct offset boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(xmin, xmax) - xmin boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(ymin, ymax) - ymin # Rescale relative coords if is_box_rel: boxes[:, [0, 2]] /= xmax - xmin boxes[:, [1, 3]] /= ymax - ymin # Remove 0-sized boxes is_valid = np.logical_and(boxes[:, 1] < boxes[:, 3], boxes[:, 0] < boxes[:, 2]) return boxes[is_valid] def expand_line(line: np.ndarray, target_shape: Tuple[int, int]) -> Tuple[float, float]: """Expands a 2-point line, so that the first is on the edge. In other terms, we extend the line in the same direction until we meet one of the edges. Args: ---- line: array of shape (2, 2) of the point supposed to be on one edge, and the shadow tip. target_shape: the desired mask shape Returns: ------- 2D coordinates of the first point once we extended the line (on one of the edges) """ if any(coord == 0 or coord == size for coord, size in zip(line[0], target_shape[::-1])): return line[0] # Get the line equation _tmp = line[1] - line[0] _direction = _tmp > 0 _flat = _tmp == 0 # vertical case if _tmp[0] == 0: solutions = [ # y = 0 (line[0, 0], 0), # y = bot (line[0, 0], target_shape[0]), ] # horizontal elif _tmp[1] == 0: solutions = [ # x = 0 (0, line[0, 1]), # x = right (target_shape[1], line[0, 1]), ] else: alpha = _tmp[1] / _tmp[0] beta = line[1, 1] - alpha * line[1, 0] # Solve it for edges solutions = [ # x = 0 (0, beta), # y = 0 (-beta / alpha, 0), # x = right (target_shape[1], alpha * target_shape[1] + beta), # y = bot ((target_shape[0] - beta) / alpha, target_shape[0]), ] for point in solutions: # Skip points that are out of the final image if any(val < 0 or val > size for val, size in zip(point, target_shape[::-1])): continue if all( val == ref if _same else (val < ref if _dir else val > ref) for val, ref, _dir, _same in zip(point, line[1], _direction, _flat) ): return point raise ValueError def create_shadow_mask( target_shape: Tuple[int, int], min_base_width=0.3, max_tip_width=0.5, max_tip_height=0.3, ) -> np.ndarray: """Creates a random shadow mask Args: ---- target_shape: the target shape (H, W) min_base_width: the relative minimum shadow base width max_tip_width: the relative maximum shadow tip width max_tip_height: the relative maximum shadow tip height Returns: ------- a numpy ndarray of shape (H, W, 1) with values in the range [0, 1] """ # Default base is top _params = np.random.rand(6) base_width = min_base_width + (1 - min_base_width) * _params[0] base_center = base_width / 2 + (1 - base_width) * _params[1] # Ensure tip width is smaller for shadow consistency tip_width = min(_params[2] * base_width * target_shape[0] / target_shape[1], max_tip_width) tip_center = tip_width / 2 + (1 - tip_width) * _params[3] tip_height = _params[4] * max_tip_height tip_mid = tip_height / 2 + (1 - tip_height) * _params[5] _order = tip_center < base_center contour: np.ndarray = np.array( [ [base_center - base_width / 2, 0], [base_center + base_width / 2, 0], [tip_center + tip_width / 2, tip_mid + tip_height / 2 if _order else tip_mid - tip_height / 2], [tip_center - tip_width / 2, tip_mid - tip_height / 2 if _order else tip_mid + tip_height / 2], ], dtype=np.float32, ) # Convert to absolute coords abs_contour: np.ndarray = ( np.stack( (contour[:, 0] * target_shape[1], contour[:, 1] * target_shape[0]), axis=-1, ) .round() .astype(np.int32) ) # Direction _params = np.random.rand(1) rotated_contour = ( rotate_abs_geoms( abs_contour[None, ...], 360 * _params[0], target_shape, expand=False, )[0] .round() .astype(np.int32) ) # Check approx quadrant quad_idx = int(_params[0] / 0.25) # Top-bot if quad_idx % 2 == 0: intensity_mask = np.repeat(np.arange(target_shape[0])[:, None], target_shape[1], axis=1) / (target_shape[0] - 1) if quad_idx == 0: intensity_mask = 1 - intensity_mask # Left - right else: intensity_mask = np.repeat(np.arange(target_shape[1])[None, :], target_shape[0], axis=0) / (target_shape[1] - 1) if quad_idx == 1: intensity_mask = 1 - intensity_mask # Expand base final_contour = rotated_contour.copy() final_contour[0] = expand_line(final_contour[[0, 3]], target_shape) final_contour[1] = expand_line(final_contour[[1, 2]], target_shape) # If both base are not on the same side, add a point if not np.any(final_contour[0] == final_contour[1]): corner_x = 0 if max(final_contour[0, 0], final_contour[1, 0]) < target_shape[1] else target_shape[1] corner_y = 0 if max(final_contour[0, 1], final_contour[1, 1]) < target_shape[0] else target_shape[0] corner: np.ndarray = np.array([corner_x, corner_y]) final_contour = np.concatenate((final_contour[:1], corner[None, ...], final_contour[1:]), axis=0) # Direction & rotate mask: np.ndarray = np.zeros((*target_shape, 1), dtype=np.uint8) mask = cv2.fillPoly(mask, [final_contour], (255,), lineType=cv2.LINE_AA)[..., 0] return (mask / 255).astype(np.float32).clip(0, 1) * intensity_mask.astype(np.float32) # type: ignore[operator]