# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. from copy import deepcopy from typing import Any, Callable, Dict, List, Optional, Tuple import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.applications import ResNet50 from tensorflow.keras.models import Sequential from doctr.datasets import VOCABS from ...utils import conv_sequence, load_pretrained_params __all__ = ["ResNet", "resnet18", "resnet31", "resnet34", "resnet50", "resnet34_wide"] default_cfgs: Dict[str, Dict[str, Any]] = { "resnet18": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 32, 3), "classes": list(VOCABS["french"]), "url": "https://doctr-static.mindee.com/models?id=v0.4.1/resnet18-d4634669.zip&src=0", }, "resnet31": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 32, 3), "classes": list(VOCABS["french"]), "url": "https://doctr-static.mindee.com/models?id=v0.5.0/resnet31-5a47a60b.zip&src=0", }, "resnet34": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 32, 3), "classes": list(VOCABS["french"]), "url": "https://doctr-static.mindee.com/models?id=v0.5.0/resnet34-5dcc97ca.zip&src=0", }, "resnet50": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 32, 3), "classes": list(VOCABS["french"]), "url": "https://doctr-static.mindee.com/models?id=v0.5.0/resnet50-e75e4cdf.zip&src=0", }, "resnet34_wide": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 32, 3), "classes": list(VOCABS["french"]), "url": "https://doctr-static.mindee.com/models?id=v0.5.0/resnet34_wide-c1271816.zip&src=0", }, } class ResnetBlock(layers.Layer): """Implements a resnet31 block with shortcut Args: ---- conv_shortcut: Use of shortcut output_channels: number of channels to use in Conv2D kernel_size: size of square kernels strides: strides to use in the first convolution of the block """ def __init__(self, output_channels: int, conv_shortcut: bool, strides: int = 1, **kwargs) -> None: super().__init__(**kwargs) if conv_shortcut: self.shortcut = Sequential([ layers.Conv2D( filters=output_channels, strides=strides, padding="same", kernel_size=1, use_bias=False, kernel_initializer="he_normal", ), layers.BatchNormalization(), ]) else: self.shortcut = layers.Lambda(lambda x: x) self.conv_block = Sequential(self.conv_resnetblock(output_channels, 3, strides)) self.act = layers.Activation("relu") @staticmethod def conv_resnetblock( output_channels: int, kernel_size: int, strides: int = 1, ) -> List[layers.Layer]: return [ *conv_sequence(output_channels, "relu", bn=True, strides=strides, kernel_size=kernel_size), *conv_sequence(output_channels, None, bn=True, kernel_size=kernel_size), ] def call(self, inputs: tf.Tensor) -> tf.Tensor: clone = self.shortcut(inputs) conv_out = self.conv_block(inputs) out = self.act(clone + conv_out) return out def resnet_stage( num_blocks: int, out_channels: int, shortcut: bool = False, downsample: bool = False ) -> List[layers.Layer]: _layers: List[layers.Layer] = [ResnetBlock(out_channels, conv_shortcut=shortcut, strides=2 if downsample else 1)] for _ in range(1, num_blocks): _layers.append(ResnetBlock(out_channels, conv_shortcut=False)) return _layers class ResNet(Sequential): """Implements a ResNet architecture Args: ---- num_blocks: number of resnet block in each stage output_channels: number of channels in each stage stage_downsample: whether the first residual block of a stage should downsample stage_conv: whether to add a conv_sequence after each stage stage_pooling: pooling to add after each stage (if None, no pooling) origin_stem: whether to use the orginal ResNet stem or ResNet-31's stem_channels: number of output channels of the stem convolutions attn_module: attention module to use in each stage include_top: whether the classifier head should be instantiated num_classes: number of output classes input_shape: shape of inputs """ def __init__( self, num_blocks: List[int], output_channels: List[int], stage_downsample: List[bool], stage_conv: List[bool], stage_pooling: List[Optional[Tuple[int, int]]], origin_stem: bool = True, stem_channels: int = 64, attn_module: Optional[Callable[[int], layers.Layer]] = None, include_top: bool = True, num_classes: int = 1000, cfg: Optional[Dict[str, Any]] = None, input_shape: Optional[Tuple[int, int, int]] = None, ) -> None: inplanes = stem_channels if origin_stem: _layers = [ *conv_sequence(inplanes, "relu", True, kernel_size=7, strides=2, input_shape=input_shape), layers.MaxPool2D(pool_size=(3, 3), strides=2, padding="same"), ] else: _layers = [ *conv_sequence(inplanes // 2, "relu", True, kernel_size=3, input_shape=input_shape), *conv_sequence(inplanes, "relu", True, kernel_size=3), layers.MaxPool2D(pool_size=2, strides=2, padding="valid"), ] for n_blocks, out_chan, down, conv, pool in zip( num_blocks, output_channels, stage_downsample, stage_conv, stage_pooling ): _layers.extend(resnet_stage(n_blocks, out_chan, out_chan != inplanes, down)) if attn_module is not None: _layers.append(attn_module(out_chan)) if conv: _layers.extend(conv_sequence(out_chan, activation="relu", bn=True, kernel_size=3)) if pool: _layers.append(layers.MaxPool2D(pool_size=pool, strides=pool, padding="valid")) inplanes = out_chan if include_top: _layers.extend([ layers.GlobalAveragePooling2D(), layers.Dense(num_classes), ]) super().__init__(_layers) self.cfg = cfg def _resnet( arch: str, pretrained: bool, num_blocks: List[int], output_channels: List[int], stage_downsample: List[bool], stage_conv: List[bool], stage_pooling: List[Optional[Tuple[int, int]]], origin_stem: bool = True, **kwargs: Any, ) -> ResNet: kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs[arch]["classes"])) kwargs["input_shape"] = kwargs.get("input_shape", default_cfgs[arch]["input_shape"]) kwargs["classes"] = kwargs.get("classes", default_cfgs[arch]["classes"]) _cfg = deepcopy(default_cfgs[arch]) _cfg["num_classes"] = kwargs["num_classes"] _cfg["classes"] = kwargs["classes"] _cfg["input_shape"] = kwargs["input_shape"] kwargs.pop("classes") # Build the model model = ResNet( num_blocks, output_channels, stage_downsample, stage_conv, stage_pooling, origin_stem, cfg=_cfg, **kwargs ) # Load pretrained parameters if pretrained: load_pretrained_params(model, default_cfgs[arch]["url"]) return model def resnet18(pretrained: bool = False, **kwargs: Any) -> ResNet: """Resnet-18 architecture as described in `"Deep Residual Learning for Image Recognition", <https://arxiv.org/pdf/1512.03385.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import resnet18 >>> model = resnet18(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained: boolean, True if model is pretrained **kwargs: keyword arguments of the ResNet architecture Returns: ------- A classification model """ return _resnet( "resnet18", pretrained, [2, 2, 2, 2], [64, 128, 256, 512], [False, True, True, True], [False] * 4, [None] * 4, True, **kwargs, ) def resnet31(pretrained: bool = False, **kwargs: Any) -> ResNet: """Resnet31 architecture with rectangular pooling windows as described in `"Show, Attend and Read:A Simple and Strong Baseline for Irregular Text Recognition", <https://arxiv.org/pdf/1811.00751.pdf>`_. Downsizing: (H, W) --> (H/8, W/4) >>> import tensorflow as tf >>> from doctr.models import resnet31 >>> model = resnet31(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained: boolean, True if model is pretrained **kwargs: keyword arguments of the ResNet architecture Returns: ------- A classification model """ return _resnet( "resnet31", pretrained, [1, 2, 5, 3], [256, 256, 512, 512], [False] * 4, [True] * 4, [(2, 2), (2, 1), None, None], False, stem_channels=128, **kwargs, ) def resnet34(pretrained: bool = False, **kwargs: Any) -> ResNet: """Resnet-34 architecture as described in `"Deep Residual Learning for Image Recognition", <https://arxiv.org/pdf/1512.03385.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import resnet34 >>> model = resnet34(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained: boolean, True if model is pretrained **kwargs: keyword arguments of the ResNet architecture Returns: ------- A classification model """ return _resnet( "resnet34", pretrained, [3, 4, 6, 3], [64, 128, 256, 512], [False, True, True, True], [False] * 4, [None] * 4, True, **kwargs, ) def resnet50(pretrained: bool = False, **kwargs: Any) -> ResNet: """Resnet-50 architecture as described in `"Deep Residual Learning for Image Recognition", <https://arxiv.org/pdf/1512.03385.pdf>`_. >>> import tensorflow as tf >>> from doctr.models import resnet50 >>> model = resnet50(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained: boolean, True if model is pretrained **kwargs: keyword arguments of the ResNet architecture Returns: ------- A classification model """ kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs["resnet50"]["classes"])) kwargs["input_shape"] = kwargs.get("input_shape", default_cfgs["resnet50"]["input_shape"]) kwargs["classes"] = kwargs.get("classes", default_cfgs["resnet50"]["classes"]) _cfg = deepcopy(default_cfgs["resnet50"]) _cfg["num_classes"] = kwargs["num_classes"] _cfg["classes"] = kwargs["classes"] _cfg["input_shape"] = kwargs["input_shape"] kwargs.pop("classes") model = ResNet50( weights=None, include_top=True, pooling=True, input_shape=kwargs["input_shape"], classes=kwargs["num_classes"], classifier_activation=None, ) model.cfg = _cfg # Load pretrained parameters if pretrained: load_pretrained_params(model, default_cfgs["resnet50"]["url"]) return model def resnet34_wide(pretrained: bool = False, **kwargs: Any) -> ResNet: """Resnet-34 architecture as described in `"Deep Residual Learning for Image Recognition", <https://arxiv.org/pdf/1512.03385.pdf>`_ with twice as many output channels for each stage. >>> import tensorflow as tf >>> from doctr.models import resnet34_wide >>> model = resnet34_wide(pretrained=False) >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained: boolean, True if model is pretrained **kwargs: keyword arguments of the ResNet architecture Returns: ------- A classification model """ return _resnet( "resnet34_wide", pretrained, [3, 4, 6, 3], [128, 256, 512, 1024], [False, True, True, True], [False] * 4, [None] * 4, True, stem_channels=128, **kwargs, )