# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. # Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import Sequential, layers from doctr.file_utils import CLASS_NAME from doctr.models.utils import IntermediateLayerGetter, _bf16_to_float32, load_pretrained_params from doctr.utils.repr import NestedObject from ...classification import textnet_base, textnet_small, textnet_tiny from ...modules.layers import FASTConvLayer from .base import _FAST, FASTPostProcessor __all__ = ["FAST", "fast_tiny", "fast_small", "fast_base", "reparameterize"] default_cfgs: Dict[str, Dict[str, Any]] = { "fast_tiny": { "input_shape": (1024, 1024, 3), "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_tiny-959daecb.zip&src=0", }, "fast_small": { "input_shape": (1024, 1024, 3), "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_small-f1617503.zip&src=0", }, "fast_base": { "input_shape": (1024, 1024, 3), "mean": (0.798, 0.785, 0.772), "std": (0.264, 0.2749, 0.287), "url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_base-255e2ac3.zip&src=0", }, } class FastNeck(layers.Layer, NestedObject): """Neck of the FAST architecture, composed of a series of 3x3 convolutions and upsampling layer. Args: ---- in_channels: number of input channels out_channels: number of output channels """ def __init__( self, in_channels: int, out_channels: int = 128, ) -> None: super().__init__() self.reduction = [FASTConvLayer(in_channels * scale, out_channels, kernel_size=3) for scale in [1, 2, 4, 8]] def _upsample(self, x: tf.Tensor, y: tf.Tensor) -> tf.Tensor: return tf.image.resize(x, size=y.shape[1:3], method="bilinear") def call(self, x: tf.Tensor, **kwargs: Any) -> tf.Tensor: f1, f2, f3, f4 = x f1, f2, f3, f4 = [reduction(f, **kwargs) for reduction, f in zip(self.reduction, (f1, f2, f3, f4))] f2, f3, f4 = [self._upsample(f, f1) for f in (f2, f3, f4)] f = tf.concat((f1, f2, f3, f4), axis=-1) return f class FastHead(Sequential): """Head of the FAST architecture Args: ---- in_channels: number of input channels num_classes: number of output classes out_channels: number of output channels dropout: dropout probability """ def __init__( self, in_channels: int, num_classes: int, out_channels: int = 128, dropout: float = 0.1, ) -> None: _layers = [ FASTConvLayer(in_channels, out_channels, kernel_size=3), layers.Dropout(dropout), layers.Conv2D(num_classes, kernel_size=1, use_bias=False), ] super().__init__(_layers) class FAST(_FAST, keras.Model, NestedObject): """FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation" `_. Args: ---- feature extractor: the backbone serving as feature extractor bin_thresh: threshold for binarization box_thresh: minimal objectness score to consider a box dropout_prob: dropout probability pooling_size: size of the pooling layer assume_straight_pages: if True, fit straight bounding boxes only exportable: onnx exportable returns only logits cfg: the configuration dict of the model class_names: list of class names """ _children_names: List[str] = ["feat_extractor", "neck", "head", "postprocessor"] def __init__( self, feature_extractor: IntermediateLayerGetter, bin_thresh: float = 0.1, box_thresh: float = 0.1, dropout_prob: float = 0.1, pooling_size: int = 4, # different from paper performs better on close text-rich images assume_straight_pages: bool = True, exportable: bool = False, cfg: Optional[Dict[str, Any]] = {}, class_names: List[str] = [CLASS_NAME], ) -> None: super().__init__() self.class_names = class_names num_classes: int = len(self.class_names) self.cfg = cfg self.feat_extractor = feature_extractor self.exportable = exportable self.assume_straight_pages = assume_straight_pages # Identify the number of channels for the neck & head initialization feat_out_channels = [ layers.Input(shape=in_shape[1:]).shape[-1] for in_shape in self.feat_extractor.output_shape ] # Initialize neck & head self.neck = FastNeck(feat_out_channels[0], feat_out_channels[1]) self.head = FastHead(feat_out_channels[-1], num_classes, feat_out_channels[1], dropout_prob) # NOTE: The post processing from the paper works not well for text-rich images # so we use a modified version from DBNet self.postprocessor = FASTPostProcessor( assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh ) # Pooling layer as erosion reversal as described in the paper self.pooling = layers.MaxPooling2D(pool_size=pooling_size // 2 + 1, strides=1, padding="same") def compute_loss( self, out_map: tf.Tensor, target: List[Dict[str, np.ndarray]], eps: float = 1e-6, ) -> tf.Tensor: """Compute fast loss, 2 x Dice loss where the text kernel loss is scaled by 0.5. Args: ---- out_map: output feature map of the model of shape (N, num_classes, H, W) target: list of dictionary where each dict has a `boxes` and a `flags` entry eps: epsilon factor in dice loss Returns: ------- A loss tensor """ targets = self.build_target(target, out_map.shape[1:], True) seg_target = tf.convert_to_tensor(targets[0], dtype=out_map.dtype) seg_mask = tf.convert_to_tensor(targets[1], dtype=out_map.dtype) shrunken_kernel = tf.convert_to_tensor(targets[2], dtype=out_map.dtype) def ohem(score: tf.Tensor, gt: tf.Tensor, mask: tf.Tensor) -> tf.Tensor: pos_num = tf.reduce_sum(tf.cast(gt > 0.5, dtype=tf.int32)) - tf.reduce_sum( tf.cast((gt > 0.5) & (mask <= 0.5), dtype=tf.int32) ) neg_num = tf.reduce_sum(tf.cast(gt <= 0.5, dtype=tf.int32)) neg_num = tf.minimum(pos_num * 3, neg_num) if neg_num == 0 or pos_num == 0: return mask neg_score_sorted, _ = tf.nn.top_k(-tf.boolean_mask(score, gt <= 0.5), k=neg_num) threshold = -neg_score_sorted[-1] selected_mask = tf.math.logical_and((score >= threshold) | (gt > 0.5), (mask > 0.5)) return tf.cast(selected_mask, dtype=tf.float32) if len(self.class_names) > 1: kernels = tf.nn.softmax(out_map, axis=-1) prob_map = tf.nn.softmax(self.pooling(out_map), axis=-1) else: kernels = tf.sigmoid(out_map) prob_map = tf.sigmoid(self.pooling(out_map)) # As described in the paper, we use the Dice loss for the text segmentation map and the Dice loss scaled by 0.5. selected_masks = tf.stack( [ohem(score, gt, mask) for score, gt, mask in zip(prob_map, seg_target, seg_mask)], axis=0 ) inter = tf.reduce_sum(selected_masks * prob_map * seg_target, axis=(0, 1, 2)) cardinality = tf.reduce_sum(selected_masks * (prob_map + seg_target), axis=(0, 1, 2)) text_loss = tf.reduce_mean((1 - 2 * inter / (cardinality + eps))) * 0.5 # As described in the paper, we use the Dice loss for the text kernel map. selected_masks = seg_target * seg_mask inter = tf.reduce_sum(selected_masks * kernels * shrunken_kernel, axis=(0, 1, 2)) cardinality = tf.reduce_sum(selected_masks * (kernels + shrunken_kernel), axis=(0, 1, 2)) kernel_loss = tf.reduce_mean((1 - 2 * inter / (cardinality + eps))) return text_loss + kernel_loss def call( self, x: tf.Tensor, target: Optional[List[Dict[str, np.ndarray]]] = None, return_model_output: bool = False, return_preds: bool = False, **kwargs: Any, ) -> Dict[str, Any]: feat_maps = self.feat_extractor(x, **kwargs) # Pass through the Neck & Head & Upsample feat_concat = self.neck(feat_maps, **kwargs) logits: tf.Tensor = self.head(feat_concat, **kwargs) logits = layers.UpSampling2D(size=x.shape[-2] // logits.shape[-2], interpolation="bilinear")(logits, **kwargs) out: Dict[str, tf.Tensor] = {} if self.exportable: out["logits"] = logits return out if return_model_output or target is None or return_preds: prob_map = _bf16_to_float32(tf.math.sigmoid(self.pooling(logits, **kwargs))) if return_model_output: out["out_map"] = prob_map if target is None or return_preds: # Post-process boxes (keep only text predictions) out["preds"] = [dict(zip(self.class_names, preds)) for preds in self.postprocessor(prob_map.numpy())] if target is not None: loss = self.compute_loss(logits, target) out["loss"] = loss return out def reparameterize(model: Union[FAST, layers.Layer]) -> FAST: """Fuse batchnorm and conv layers and reparameterize the model args: ---- model: the FAST model to reparameterize Returns: ------- the reparameterized model """ last_conv = None last_conv_idx = None for idx, layer in enumerate(model.layers): if hasattr(layer, "layers") or isinstance( layer, (FASTConvLayer, FastNeck, FastHead, layers.BatchNormalization, layers.Conv2D) ): if isinstance(layer, layers.BatchNormalization): # fuse batchnorm only if it is followed by a conv layer if last_conv is None: continue conv_w = last_conv.kernel conv_b = last_conv.bias if last_conv.use_bias else tf.zeros_like(layer.moving_mean) factor = layer.gamma / tf.sqrt(layer.moving_variance + layer.epsilon) last_conv.kernel = conv_w * factor.numpy().reshape([1, 1, 1, -1]) if last_conv.use_bias: last_conv.bias.assign((conv_b - layer.moving_mean) * factor + layer.beta) model.layers[last_conv_idx] = last_conv # Replace the last conv layer with the fused version model.layers[idx] = layers.Lambda(lambda x: x) last_conv = None elif isinstance(layer, layers.Conv2D): last_conv = layer last_conv_idx = idx elif isinstance(layer, FASTConvLayer): layer.reparameterize_layer() elif isinstance(layer, FastNeck): for reduction in layer.reduction: reduction.reparameterize_layer() elif isinstance(layer, FastHead): reparameterize(layer) else: reparameterize(layer) return model def _fast( arch: str, pretrained: bool, backbone_fn, feat_layers: List[str], pretrained_backbone: bool = True, input_shape: Optional[Tuple[int, int, int]] = None, **kwargs: Any, ) -> FAST: pretrained_backbone = pretrained_backbone and not pretrained # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["input_shape"] = input_shape or _cfg["input_shape"] if not kwargs.get("class_names", None): kwargs["class_names"] = _cfg.get("class_names", [CLASS_NAME]) else: kwargs["class_names"] = sorted(kwargs["class_names"]) # Feature extractor feat_extractor = IntermediateLayerGetter( backbone_fn( input_shape=_cfg["input_shape"], include_top=False, pretrained=pretrained_backbone, ), feat_layers, ) # Build the model model = FAST(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: load_pretrained_params(model, _cfg["url"]) # Build the model for reparameterization to access the layers _ = model(tf.random.uniform(shape=[1, *_cfg["input_shape"]], maxval=1, dtype=tf.float32), training=False) return model def fast_tiny(pretrained: bool = False, **kwargs: Any) -> FAST: """FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation" `_, using a tiny TextNet backbone. >>> import tensorflow as tf >>> from doctr.models import fast_tiny >>> model = fast_tiny(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained (bool): If True, returns a model pre-trained on our text detection dataset **kwargs: keyword arguments of the DBNet architecture Returns: ------- text detection architecture """ return _fast( "fast_tiny", pretrained, textnet_tiny, ["stage_0", "stage_1", "stage_2", "stage_3"], **kwargs, ) def fast_small(pretrained: bool = False, **kwargs: Any) -> FAST: """FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation" `_, using a small TextNet backbone. >>> import tensorflow as tf >>> from doctr.models import fast_small >>> model = fast_small(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained (bool): If True, returns a model pre-trained on our text detection dataset **kwargs: keyword arguments of the DBNet architecture Returns: ------- text detection architecture """ return _fast( "fast_small", pretrained, textnet_small, ["stage_0", "stage_1", "stage_2", "stage_3"], **kwargs, ) def fast_base(pretrained: bool = False, **kwargs: Any) -> FAST: """FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation" `_, using a base TextNet backbone. >>> import tensorflow as tf >>> from doctr.models import fast_base >>> model = fast_base(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 1024, 1024, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained (bool): If True, returns a model pre-trained on our text detection dataset **kwargs: keyword arguments of the DBNet architecture Returns: ------- text detection architecture """ return _fast( "fast_base", pretrained, textnet_base, ["stage_0", "stage_1", "stage_2", "stage_3"], **kwargs, )