# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple, Union import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.models import Model, Sequential from doctr.datasets import VOCABS from ...classification import mobilenet_v3_large_r, mobilenet_v3_small_r, vgg16_bn_r from ...utils.tensorflow import _bf16_to_float32, load_pretrained_params from ..core import RecognitionModel, RecognitionPostProcessor __all__ = ["CRNN", "crnn_vgg16_bn", "crnn_mobilenet_v3_small", "crnn_mobilenet_v3_large"] default_cfgs: Dict[str, Dict[str, Any]] = { "crnn_vgg16_bn": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 128, 3), "vocab": VOCABS["legacy_french"], "url": "https://doctr-static.mindee.com/models?id=v0.3.0/crnn_vgg16_bn-76b7f2c6.zip&src=0", }, "crnn_mobilenet_v3_small": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 128, 3), "vocab": VOCABS["french"], "url": "https://doctr-static.mindee.com/models?id=v0.3.1/crnn_mobilenet_v3_small-7f36edec.zip&src=0", }, "crnn_mobilenet_v3_large": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (32, 128, 3), "vocab": VOCABS["french"], "url": "https://doctr-static.mindee.com/models?id=v0.6.0/crnn_mobilenet_v3_large-cccc50b1.zip&src=0", }, } class CTCPostProcessor(RecognitionPostProcessor): """Postprocess raw prediction of the model (logits) to a list of words using CTC decoding Args: ---- vocab: string containing the ordered sequence of supported characters ignore_case: if True, ignore case of letters ignore_accents: if True, ignore accents of letters """ def __call__( self, logits: tf.Tensor, beam_width: int = 1, top_paths: int = 1, ) -> Union[List[Tuple[str, float]], List[Tuple[List[str], List[float]]]]: """Performs decoding of raw output with CTC and decoding of CTC predictions with label_to_idx mapping dictionnary Args: ---- logits: raw output of the model, shape BATCH_SIZE X SEQ_LEN X NUM_CLASSES + 1 beam_width: An int scalar >= 0 (beam search beam width). top_paths: An int scalar >= 0, <= beam_width (controls output size). Returns: ------- A list of decoded words of length BATCH_SIZE """ # Decode CTC _decoded, _log_prob = tf.nn.ctc_beam_search_decoder( tf.transpose(logits, perm=[1, 0, 2]), tf.fill(tf.shape(logits)[:1], tf.shape(logits)[1]), beam_width=beam_width, top_paths=top_paths, ) _decoded = tf.sparse.concat( 1, [tf.sparse.expand_dims(dec, axis=1) for dec in _decoded], expand_nonconcat_dims=True, ) # dim : batchsize x beamwidth x actual_max_len_predictions out_idxs = tf.sparse.to_dense(_decoded, default_value=len(self.vocab)) # Map it to characters _decoded_strings_pred = tf.strings.reduce_join( inputs=tf.nn.embedding_lookup(tf.constant(self._embedding, dtype=tf.string), out_idxs), axis=-1, ) _decoded_strings_pred = tf.strings.split(_decoded_strings_pred, "") decoded_strings_pred = tf.sparse.to_dense(_decoded_strings_pred.to_sparse(), default_value="not valid")[ :, :, 0 ] # dim : batch_size x beam_width if top_paths == 1: probs = tf.math.exp(tf.squeeze(_log_prob, axis=1)) # dim : batchsize decoded_strings_pred = tf.squeeze(decoded_strings_pred, axis=1) word_values = [word.decode() for word in decoded_strings_pred.numpy().tolist()] else: probs = tf.math.exp(_log_prob) # dim : batchsize x beamwidth word_values = [[word.decode() for word in words] for words in decoded_strings_pred.numpy().tolist()] return list(zip(word_values, probs.numpy().tolist())) class CRNN(RecognitionModel, Model): """Implements a CRNN architecture as described in `"An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition" `_. Args: ---- feature_extractor: the backbone serving as feature extractor vocab: vocabulary used for encoding rnn_units: number of units in the LSTM layers exportable: onnx exportable returns only logits beam_width: beam width for beam search decoding top_paths: number of top paths for beam search decoding cfg: configuration dictionary """ _children_names: List[str] = ["feat_extractor", "decoder", "postprocessor"] def __init__( self, feature_extractor: tf.keras.Model, vocab: str, rnn_units: int = 128, exportable: bool = False, beam_width: int = 1, top_paths: int = 1, cfg: Optional[Dict[str, Any]] = None, ) -> None: # Initialize kernels h, w, c = feature_extractor.output_shape[1:] super().__init__() self.vocab = vocab self.max_length = w self.cfg = cfg self.exportable = exportable self.feat_extractor = feature_extractor self.decoder = Sequential([ layers.Bidirectional(layers.LSTM(units=rnn_units, return_sequences=True)), layers.Bidirectional(layers.LSTM(units=rnn_units, return_sequences=True)), layers.Dense(units=len(vocab) + 1), ]) self.decoder.build(input_shape=(None, w, h * c)) self.postprocessor = CTCPostProcessor(vocab=vocab) self.beam_width = beam_width self.top_paths = top_paths def compute_loss( self, model_output: tf.Tensor, target: List[str], ) -> tf.Tensor: """Compute CTC loss for the model. Args: ---- model_output: predicted logits of the model target: lengths of each gt word inside the batch Returns: ------- The loss of the model on the batch """ gt, seq_len = self.build_target(target) batch_len = model_output.shape[0] input_length = tf.fill((batch_len,), model_output.shape[1]) ctc_loss = tf.nn.ctc_loss( gt, model_output, seq_len, input_length, logits_time_major=False, blank_index=len(self.vocab) ) return ctc_loss def call( self, x: tf.Tensor, target: Optional[List[str]] = None, return_model_output: bool = False, return_preds: bool = False, beam_width: int = 1, top_paths: int = 1, **kwargs: Any, ) -> Dict[str, Any]: if kwargs.get("training", False) and target is None: raise ValueError("Need to provide labels during training") features = self.feat_extractor(x, **kwargs) # B x H x W x C --> B x W x H x C transposed_feat = tf.transpose(features, perm=[0, 2, 1, 3]) w, h, c = transposed_feat.get_shape().as_list()[1:] # B x W x H x C --> B x W x H * C features_seq = tf.reshape(transposed_feat, shape=(-1, w, h * c)) logits = _bf16_to_float32(self.decoder(features_seq, **kwargs)) out: Dict[str, tf.Tensor] = {} if self.exportable: out["logits"] = logits return out if return_model_output: out["out_map"] = logits if target is None or return_preds: # Post-process boxes out["preds"] = self.postprocessor(logits, beam_width=beam_width, top_paths=top_paths) if target is not None: out["loss"] = self.compute_loss(logits, target) return out def _crnn( arch: str, pretrained: bool, backbone_fn, pretrained_backbone: bool = True, input_shape: Optional[Tuple[int, int, int]] = None, **kwargs: Any, ) -> CRNN: pretrained_backbone = pretrained_backbone and not pretrained kwargs["vocab"] = kwargs.get("vocab", default_cfgs[arch]["vocab"]) _cfg = deepcopy(default_cfgs[arch]) _cfg["vocab"] = kwargs["vocab"] _cfg["input_shape"] = input_shape or default_cfgs[arch]["input_shape"] feat_extractor = backbone_fn( input_shape=_cfg["input_shape"], include_top=False, pretrained=pretrained_backbone, ) # Build the model model = CRNN(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: load_pretrained_params(model, _cfg["url"]) return model def crnn_vgg16_bn(pretrained: bool = False, **kwargs: Any) -> CRNN: """CRNN with a VGG-16 backbone as described in `"An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition" `_. >>> import tensorflow as tf >>> from doctr.models import crnn_vgg16_bn >>> model = crnn_vgg16_bn(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained (bool): If True, returns a model pre-trained on our text recognition dataset **kwargs: keyword arguments of the CRNN architecture Returns: ------- text recognition architecture """ return _crnn("crnn_vgg16_bn", pretrained, vgg16_bn_r, **kwargs) def crnn_mobilenet_v3_small(pretrained: bool = False, **kwargs: Any) -> CRNN: """CRNN with a MobileNet V3 Small backbone as described in `"An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition" `_. >>> import tensorflow as tf >>> from doctr.models import crnn_mobilenet_v3_small >>> model = crnn_mobilenet_v3_small(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained (bool): If True, returns a model pre-trained on our text recognition dataset **kwargs: keyword arguments of the CRNN architecture Returns: ------- text recognition architecture """ return _crnn("crnn_mobilenet_v3_small", pretrained, mobilenet_v3_small_r, **kwargs) def crnn_mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) -> CRNN: """CRNN with a MobileNet V3 Large backbone as described in `"An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition" `_. >>> import tensorflow as tf >>> from doctr.models import crnn_mobilenet_v3_large >>> model = crnn_mobilenet_v3_large(pretrained=True) >>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32) >>> out = model(input_tensor) Args: ---- pretrained (bool): If True, returns a model pre-trained on our text recognition dataset **kwargs: keyword arguments of the CRNN architecture Returns: ------- text recognition architecture """ return _crnn("crnn_mobilenet_v3_large", pretrained, mobilenet_v3_large_r, **kwargs)