# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. import math from copy import deepcopy from itertools import permutations from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch from torch import nn from torch.nn import functional as F from torchvision.models._utils import IntermediateLayerGetter from doctr.datasets import VOCABS from doctr.models.modules.transformer import MultiHeadAttention, PositionwiseFeedForward from ...classification import vit_s from ...utils.pytorch import _bf16_to_float32, load_pretrained_params from .base import _PARSeq, _PARSeqPostProcessor __all__ = ["PARSeq", "parseq"] default_cfgs: Dict[str, Dict[str, Any]] = { "parseq": { "mean": (0.694, 0.695, 0.693), "std": (0.299, 0.296, 0.301), "input_shape": (3, 32, 128), "vocab": VOCABS["french"], "url": "https://doctr-static.mindee.com/models?id=v0.7.0/parseq-56125471.pt&src=0", }, } class CharEmbedding(nn.Module): """Implements the character embedding module Args: ---- vocab_size: size of the vocabulary d_model: dimension of the model """ def __init__(self, vocab_size: int, d_model: int): super().__init__() self.embedding = nn.Embedding(vocab_size, d_model) self.d_model = d_model def forward(self, x: torch.Tensor) -> torch.Tensor: return math.sqrt(self.d_model) * self.embedding(x) class PARSeqDecoder(nn.Module): """Implements decoder module of the PARSeq model Args: ---- d_model: dimension of the model num_heads: number of attention heads ffd: dimension of the feed forward layer ffd_ratio: depth multiplier for the feed forward layer dropout: dropout rate """ def __init__( self, d_model: int, num_heads: int = 12, ffd: int = 2048, ffd_ratio: int = 4, dropout: float = 0.1, ): super().__init__() self.attention = MultiHeadAttention(num_heads, d_model, dropout=dropout) self.cross_attention = MultiHeadAttention(num_heads, d_model, dropout=dropout) self.position_feed_forward = PositionwiseFeedForward(d_model, ffd * ffd_ratio, dropout, nn.GELU()) self.attention_norm = nn.LayerNorm(d_model, eps=1e-5) self.cross_attention_norm = nn.LayerNorm(d_model, eps=1e-5) self.query_norm = nn.LayerNorm(d_model, eps=1e-5) self.content_norm = nn.LayerNorm(d_model, eps=1e-5) self.feed_forward_norm = nn.LayerNorm(d_model, eps=1e-5) self.output_norm = nn.LayerNorm(d_model, eps=1e-5) self.attention_dropout = nn.Dropout(dropout) self.cross_attention_dropout = nn.Dropout(dropout) self.feed_forward_dropout = nn.Dropout(dropout) def forward( self, target, content, memory, target_mask: Optional[torch.Tensor] = None, ): query_norm = self.query_norm(target) content_norm = self.content_norm(content) target = target.clone() + self.attention_dropout( self.attention(query_norm, content_norm, content_norm, mask=target_mask) ) target = target.clone() + self.cross_attention_dropout( self.cross_attention(self.query_norm(target), memory, memory) ) target = target.clone() + self.feed_forward_dropout(self.position_feed_forward(self.feed_forward_norm(target))) return self.output_norm(target) class PARSeq(_PARSeq, nn.Module): """Implements a PARSeq architecture as described in `"Scene Text Recognition with Permuted Autoregressive Sequence Models" `_. Slightly modified implementation based on the official Pytorch implementation: None: super().__init__() self.vocab = vocab self.exportable = exportable self.cfg = cfg self.max_length = max_length self.vocab_size = len(vocab) self.rng = np.random.default_rng() self.feat_extractor = feature_extractor self.decoder = PARSeqDecoder(embedding_units, dec_num_heads, dec_ff_dim, dec_ffd_ratio, dropout_prob) self.head = nn.Linear(embedding_units, self.vocab_size + 1) # +1 for EOS self.embed = CharEmbedding(self.vocab_size + 3, embedding_units) # +3 for SOS, EOS, PAD self.pos_queries = nn.Parameter(torch.Tensor(1, self.max_length + 1, embedding_units)) # +1 for EOS self.dropout = nn.Dropout(p=dropout_prob) self.postprocessor = PARSeqPostProcessor(vocab=self.vocab) nn.init.trunc_normal_(self.pos_queries, std=0.02) for n, m in self.named_modules(): # Don't override the initialization of the backbone if n.startswith("feat_extractor."): continue if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.Embedding): nn.init.trunc_normal_(m.weight, std=0.02) if m.padding_idx is not None: m.weight.data[m.padding_idx].zero_() elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def generate_permutations(self, seqlen: torch.Tensor) -> torch.Tensor: # Generates permutations of the target sequence. # Borrowed from https://github.com/baudm/parseq/blob/main/strhub/models/parseq/system.py # with small modifications max_num_chars = int(seqlen.max().item()) # get longest sequence length in batch perms = [torch.arange(max_num_chars, device=seqlen.device)] max_perms = math.factorial(max_num_chars) // 2 num_gen_perms = min(3, max_perms) if max_num_chars < 5: # Pool of permutations to sample from. We only need the first half (if complementary option is selected) # Special handling for max_num_chars == 4 which correctly divides the pool into the flipped halves if max_num_chars == 4: selector = [0, 3, 4, 6, 9, 10, 12, 16, 17, 18, 19, 21] else: selector = list(range(max_perms)) perm_pool = torch.as_tensor(list(permutations(range(max_num_chars), max_num_chars)), device=seqlen.device)[ selector ] # If the forward permutation is always selected, no need to add it to the pool for sampling perm_pool = perm_pool[1:] final_perms = torch.stack(perms) if len(perm_pool): i = self.rng.choice(len(perm_pool), size=num_gen_perms - len(final_perms), replace=False) final_perms = torch.cat([final_perms, perm_pool[i]]) else: perms.extend([ torch.randperm(max_num_chars, device=seqlen.device) for _ in range(num_gen_perms - len(perms)) ]) final_perms = torch.stack(perms) comp = final_perms.flip(-1) final_perms = torch.stack([final_perms, comp]).transpose(0, 1).reshape(-1, max_num_chars) sos_idx = torch.zeros(len(final_perms), 1, device=seqlen.device) eos_idx = torch.full((len(final_perms), 1), max_num_chars + 1, device=seqlen.device) combined = torch.cat([sos_idx, final_perms + 1, eos_idx], dim=1).int() if len(combined) > 1: combined[1, 1:] = max_num_chars + 1 - torch.arange(max_num_chars + 1, device=seqlen.device) return combined def generate_permutations_attention_masks(self, permutation: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: # Generate source and target mask for the decoder attention. sz = permutation.shape[0] mask = torch.ones((sz, sz), device=permutation.device) for i in range(sz): query_idx = permutation[i] masked_keys = permutation[i + 1 :] mask[query_idx, masked_keys] = 0.0 source_mask = mask[:-1, :-1].clone() mask[torch.eye(sz, dtype=torch.bool, device=permutation.device)] = 0.0 target_mask = mask[1:, :-1] return source_mask.int(), target_mask.int() def decode( self, target: torch.Tensor, memory: torch.Tensor, target_mask: Optional[torch.Tensor] = None, target_query: Optional[torch.Tensor] = None, ) -> torch.Tensor: """Add positional information to the target sequence and pass it through the decoder.""" batch_size, sequence_length = target.shape # apply positional information to the target sequence excluding the SOS token null_ctx = self.embed(target[:, :1]) content = self.pos_queries[:, : sequence_length - 1] + self.embed(target[:, 1:]) content = self.dropout(torch.cat([null_ctx, content], dim=1)) if target_query is None: target_query = self.pos_queries[:, :sequence_length].expand(batch_size, -1, -1) target_query = self.dropout(target_query) return self.decoder(target_query, content, memory, target_mask) def decode_autoregressive(self, features: torch.Tensor, max_len: Optional[int] = None) -> torch.Tensor: """Generate predictions for the given features.""" max_length = max_len if max_len is not None else self.max_length max_length = min(max_length, self.max_length) + 1 # Padding symbol + SOS at the beginning ys = torch.full( (features.size(0), max_length), self.vocab_size + 2, dtype=torch.long, device=features.device ) # pad ys[:, 0] = self.vocab_size + 1 # SOS token pos_queries = self.pos_queries[:, :max_length].expand(features.size(0), -1, -1) # Create query mask for the decoder attention query_mask = ( torch.tril(torch.ones((max_length, max_length), device=features.device), diagonal=0).to(dtype=torch.bool) ).int() pos_logits = [] for i in range(max_length): # Decode one token at a time without providing information about the future tokens tgt_out = self.decode( ys[:, : i + 1], features, query_mask[i : i + 1, : i + 1], target_query=pos_queries[:, i : i + 1], ) pos_prob = self.head(tgt_out) pos_logits.append(pos_prob) if i + 1 < max_length: # Update with the next token ys[:, i + 1] = pos_prob.squeeze().argmax(-1) # Stop decoding if all sequences have reached the EOS token # NOTE: `break` isn't correctly translated to Onnx so we don't break here if we want to export if not self.exportable and max_len is None and (ys == self.vocab_size).any(dim=-1).all(): break logits = torch.cat(pos_logits, dim=1) # (N, max_length, vocab_size + 1) # One refine iteration # Update query mask query_mask[torch.triu(torch.ones(max_length, max_length, dtype=torch.bool, device=features.device), 2)] = 1 # Prepare target input for 1 refine iteration sos = torch.full((features.size(0), 1), self.vocab_size + 1, dtype=torch.long, device=features.device) ys = torch.cat([sos, logits[:, :-1].argmax(-1)], dim=1) # Create padding mask for refined target input maskes all behind EOS token as False # (N, 1, 1, max_length) target_pad_mask = ~((ys == self.vocab_size).int().cumsum(-1) > 0).unsqueeze(1).unsqueeze(1) mask = (target_pad_mask.bool() & query_mask[:, : ys.shape[1]].bool()).int() logits = self.head(self.decode(ys, features, mask, target_query=pos_queries)) return logits # (N, max_length, vocab_size + 1) def forward( self, x: torch.Tensor, target: Optional[List[str]] = None, return_model_output: bool = False, return_preds: bool = False, ) -> Dict[str, Any]: features = self.feat_extractor(x)["features"] # (batch_size, patches_seqlen, d_model) # remove cls token features = features[:, 1:, :] if self.training and target is None: raise ValueError("Need to provide labels during training") if target is not None: # Build target tensor _gt, _seq_len = self.build_target(target) gt, seq_len = torch.from_numpy(_gt).to(dtype=torch.long).to(x.device), torch.tensor(_seq_len).to(x.device) gt = gt[:, : int(seq_len.max().item()) + 2] # slice up to the max length of the batch + 2 (SOS + EOS) if self.training: # Generate permutations for the target sequences tgt_perms = self.generate_permutations(seq_len) gt_in = gt[:, :-1] # remove EOS token from longest target sequence gt_out = gt[:, 1:] # remove SOS token # Create padding mask for target input # [True, True, True, ..., False, False, False] -> False is masked padding_mask = ~( ((gt_in == self.vocab_size + 2) | (gt_in == self.vocab_size)).int().cumsum(-1) > 0 ).unsqueeze(1).unsqueeze(1) # (N, 1, 1, seq_len) loss = torch.tensor(0.0, device=features.device) loss_numel: Union[int, float] = 0 n = (gt_out != self.vocab_size + 2).sum().item() for i, perm in enumerate(tgt_perms): _, target_mask = self.generate_permutations_attention_masks(perm) # (seq_len, seq_len) # combine both masks mask = (target_mask.bool() & padding_mask.bool()).int() # (N, 1, seq_len, seq_len) logits = self.head(self.decode(gt_in, features, mask)).flatten(end_dim=1) loss += n * F.cross_entropy(logits, gt_out.flatten(), ignore_index=self.vocab_size + 2) loss_numel += n # After the second iteration (i.e. done with canonical and reverse orderings), # remove the [EOS] tokens for the succeeding perms if i == 1: gt_out = torch.where(gt_out == self.vocab_size, self.vocab_size + 2, gt_out) n = (gt_out != self.vocab_size + 2).sum().item() loss /= loss_numel else: gt = gt[:, 1:] # remove SOS token max_len = gt.shape[1] - 1 # exclude EOS token logits = self.decode_autoregressive(features, max_len) loss = F.cross_entropy(logits.flatten(end_dim=1), gt.flatten(), ignore_index=self.vocab_size + 2) else: logits = self.decode_autoregressive(features) logits = _bf16_to_float32(logits) out: Dict[str, Any] = {} if self.exportable: out["logits"] = logits return out if return_model_output: out["out_map"] = logits if target is None or return_preds: # Post-process boxes out["preds"] = self.postprocessor(logits) if target is not None: out["loss"] = loss return out class PARSeqPostProcessor(_PARSeqPostProcessor): """Post processor for PARSeq architecture Args: ---- vocab: string containing the ordered sequence of supported characters """ def __call__( self, logits: torch.Tensor, ) -> List[Tuple[str, float]]: # compute pred with argmax for attention models out_idxs = logits.argmax(-1) preds_prob = torch.softmax(logits, -1).max(dim=-1)[0] # Manual decoding word_values = [ "".join(self._embedding[idx] for idx in encoded_seq).split("")[0] for encoded_seq in out_idxs.cpu().numpy() ] # compute probabilties for each word up to the EOS token probs = [ preds_prob[i, : len(word)].clip(0, 1).mean().item() if word else 0.0 for i, word in enumerate(word_values) ] return list(zip(word_values, probs)) def _parseq( arch: str, pretrained: bool, backbone_fn: Callable[[bool], nn.Module], layer: str, ignore_keys: Optional[List[str]] = None, **kwargs: Any, ) -> PARSeq: # Patch the config _cfg = deepcopy(default_cfgs[arch]) _cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"]) _cfg["input_shape"] = kwargs.get("input_shape", _cfg["input_shape"]) patch_size = kwargs.get("patch_size", (4, 8)) kwargs["vocab"] = _cfg["vocab"] kwargs["input_shape"] = _cfg["input_shape"] # Feature extractor feat_extractor = IntermediateLayerGetter( # NOTE: we don't use a pretrained backbone for non-rectangular patches to avoid the pos embed mismatch backbone_fn(False, input_shape=_cfg["input_shape"], patch_size=patch_size), # type: ignore[call-arg] {layer: "features"}, ) kwargs.pop("patch_size", None) kwargs.pop("pretrained_backbone", None) # Build the model model = PARSeq(feat_extractor, cfg=_cfg, **kwargs) # Load pretrained parameters if pretrained: # The number of classes is not the same as the number of classes in the pretrained model => # remove the last layer weights _ignore_keys = ignore_keys if _cfg["vocab"] != default_cfgs[arch]["vocab"] else None load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys) return model def parseq(pretrained: bool = False, **kwargs: Any) -> PARSeq: """PARSeq architecture from `"Scene Text Recognition with Permuted Autoregressive Sequence Models" `_. >>> import torch >>> from doctr.models import parseq >>> model = parseq(pretrained=False) >>> input_tensor = torch.rand((1, 3, 32, 128)) >>> out = model(input_tensor) Args: ---- pretrained (bool): If True, returns a model pre-trained on our text recognition dataset **kwargs: keyword arguments of the PARSeq architecture Returns: ------- text recognition architecture """ return _parseq( "parseq", pretrained, vit_s, "1", embedding_units=384, patch_size=(4, 8), ignore_keys=["embed.embedding.weight", "head.weight", "head.bias"], **kwargs, )