# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. from typing import Any, List from doctr.file_utils import is_tf_available from doctr.models.preprocessor import PreProcessor from .. import recognition from .predictor import RecognitionPredictor __all__ = ["recognition_predictor"] ARCHS: List[str] = [ "crnn_vgg16_bn", "crnn_mobilenet_v3_small", "crnn_mobilenet_v3_large", "sar_resnet31", "master", "vitstr_small", "vitstr_base", "parseq", ] def _predictor(arch: Any, pretrained: bool, **kwargs: Any) -> RecognitionPredictor: if isinstance(arch, str): if arch not in ARCHS: raise ValueError(f"unknown architecture '{arch}'") _model = recognition.__dict__[arch]( pretrained=pretrained, pretrained_backbone=kwargs.get("pretrained_backbone", True) ) else: if not isinstance( arch, (recognition.CRNN, recognition.SAR, recognition.MASTER, recognition.ViTSTR, recognition.PARSeq) ): raise ValueError(f"unknown architecture: {type(arch)}") _model = arch kwargs.pop("pretrained_backbone", None) kwargs["mean"] = kwargs.get("mean", _model.cfg["mean"]) kwargs["std"] = kwargs.get("std", _model.cfg["std"]) kwargs["batch_size"] = kwargs.get("batch_size", 128) input_shape = _model.cfg["input_shape"][:2] if is_tf_available() else _model.cfg["input_shape"][-2:] predictor = RecognitionPredictor(PreProcessor(input_shape, preserve_aspect_ratio=True, **kwargs), _model) return predictor def recognition_predictor(arch: Any = "crnn_vgg16_bn", pretrained: bool = False, **kwargs: Any) -> RecognitionPredictor: """Text recognition architecture. Example:: >>> import numpy as np >>> from doctr.models import recognition_predictor >>> model = recognition_predictor(pretrained=True) >>> input_page = (255 * np.random.rand(32, 128, 3)).astype(np.uint8) >>> out = model([input_page]) Args: ---- arch: name of the architecture or model itself to use (e.g. 'crnn_vgg16_bn') pretrained: If True, returns a model pre-trained on our text recognition dataset **kwargs: optional parameters to be passed to the architecture Returns: ------- Recognition predictor """ return _predictor(arch, pretrained, **kwargs)