# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. import csv import os from pathlib import Path from typing import Any, Dict, List, Tuple, Union import numpy as np from tqdm import tqdm from .datasets import AbstractDataset from .utils import convert_target_to_relative, crop_bboxes_from_image __all__ = ["IC13"] class IC13(AbstractDataset): """IC13 dataset from `"ICDAR 2013 Robust Reading Competition" `_. .. image:: https://doctr-static.mindee.com/models?id=v0.5.0/ic13-grid.png&src=0 :align: center >>> # NOTE: You need to download both image and label parts from Focused Scene Text challenge Task2.1 2013-2015. >>> from doctr.datasets import IC13 >>> train_set = IC13(img_folder="/path/to/Challenge2_Training_Task12_Images", >>> label_folder="/path/to/Challenge2_Training_Task1_GT") >>> img, target = train_set[0] >>> test_set = IC13(img_folder="/path/to/Challenge2_Test_Task12_Images", >>> label_folder="/path/to/Challenge2_Test_Task1_GT") >>> img, target = test_set[0] Args: ---- img_folder: folder with all the images of the dataset label_folder: folder with all annotation files for the images use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) recognition_task: whether the dataset should be used for recognition task **kwargs: keyword arguments from `AbstractDataset`. """ def __init__( self, img_folder: str, label_folder: str, use_polygons: bool = False, recognition_task: bool = False, **kwargs: Any, ) -> None: super().__init__( img_folder, pre_transforms=convert_target_to_relative if not recognition_task else None, **kwargs ) # File existence check if not os.path.exists(label_folder) or not os.path.exists(img_folder): raise FileNotFoundError( f"unable to locate {label_folder if not os.path.exists(label_folder) else img_folder}" ) self.data: List[Tuple[Union[Path, np.ndarray], Union[str, Dict[str, Any]]]] = [] np_dtype = np.float32 img_names = os.listdir(img_folder) for img_name in tqdm(iterable=img_names, desc="Unpacking IC13", total=len(img_names)): img_path = Path(img_folder, img_name) label_path = Path(label_folder, "gt_" + Path(img_name).stem + ".txt") with open(label_path, newline="\n") as f: _lines = [ [val[:-1] if val.endswith(",") else val for val in row] for row in csv.reader(f, delimiter=" ", quotechar="'") ] labels = [line[-1].replace('"', "") for line in _lines] # xmin, ymin, xmax, ymax box_targets: np.ndarray = np.array([list(map(int, line[:4])) for line in _lines], dtype=np_dtype) if use_polygons: # (x, y) coordinates of top left, top right, bottom right, bottom left corners box_targets = np.array( [ [ [coords[0], coords[1]], [coords[2], coords[1]], [coords[2], coords[3]], [coords[0], coords[3]], ] for coords in box_targets ], dtype=np_dtype, ) if recognition_task: crops = crop_bboxes_from_image(img_path=img_path, geoms=box_targets) for crop, label in zip(crops, labels): self.data.append((crop, label)) else: self.data.append((img_path, dict(boxes=box_targets, labels=labels)))