# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. from math import floor from statistics import median_low from typing import Any, Dict, List, Optional, Tuple, Union import cv2 import numpy as np from langdetect import LangDetectException, detect_langs __all__ = ["estimate_orientation", "get_language", "invert_data_structure"] def get_max_width_length_ratio(contour: np.ndarray) -> float: """Get the maximum shape ratio of a contour. Args: ---- contour: the contour from cv2.findContour Returns: ------- the maximum shape ratio """ _, (w, h), _ = cv2.minAreaRect(contour) return max(w / h, h / w) def estimate_orientation(img: np.ndarray, n_ct: int = 50, ratio_threshold_for_lines: float = 5) -> int: """Estimate the angle of the general document orientation based on the lines of the document and the assumption that they should be horizontal. Args: ---- img: the img or bitmap to analyze (H, W, C) n_ct: the number of contours used for the orientation estimation ratio_threshold_for_lines: this is the ratio w/h used to discriminates lines Returns: ------- the angle of the general document orientation """ assert len(img.shape) == 3 and img.shape[-1] in [1, 3], f"Image shape {img.shape} not supported" max_value = np.max(img) min_value = np.min(img) if max_value <= 1 and min_value >= 0 or (max_value <= 255 and min_value >= 0 and img.shape[-1] == 1): thresh = img.astype(np.uint8) if max_value <= 255 and min_value >= 0 and img.shape[-1] == 3: gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray_img = cv2.medianBlur(gray_img, 5) thresh = cv2.threshold(gray_img, thresh=0, maxval=255, type=cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] # type: ignore[assignment] # try to merge words in lines (h, w) = img.shape[:2] k_x = max(1, (floor(w / 100))) k_y = max(1, (floor(h / 100))) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (k_x, k_y)) thresh = cv2.dilate(thresh, kernel, iterations=1) # type: ignore[assignment] # extract contours contours, _ = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # Sort contours contours = sorted(contours, key=get_max_width_length_ratio, reverse=True) angles = [] for contour in contours[:n_ct]: _, (w, h), angle = cv2.minAreaRect(contour) if w / h > ratio_threshold_for_lines: # select only contours with ratio like lines angles.append(angle) elif w / h < 1 / ratio_threshold_for_lines: # if lines are vertical, substract 90 degree angles.append(angle - 90) if len(angles) == 0: return 0 # in case no angles is found else: median = -median_low(angles) return round(median) if abs(median) != 0 else 0 def rectify_crops( crops: List[np.ndarray], orientations: List[int], ) -> List[np.ndarray]: """Rotate each crop of the list according to the predicted orientation: 0: already straight, no rotation 1: 90 ccw, rotate 3 times ccw 2: 180, rotate 2 times ccw 3: 270 ccw, rotate 1 time ccw """ # Inverse predictions (if angle of +90 is detected, rotate by -90) orientations = [4 - pred if pred != 0 else 0 for pred in orientations] return ( [crop if orientation == 0 else np.rot90(crop, orientation) for orientation, crop in zip(orientations, crops)] if len(orientations) > 0 else [] ) def rectify_loc_preds( page_loc_preds: np.ndarray, orientations: List[int], ) -> Optional[np.ndarray]: """Orient the quadrangle (Polygon4P) according to the predicted orientation, so that the points are in this order: top L, top R, bot R, bot L if the crop is readable """ return ( np.stack( [ np.roll(page_loc_pred, orientation, axis=0) for orientation, page_loc_pred in zip(orientations, page_loc_preds) ], axis=0, ) if len(orientations) > 0 else None ) def get_language(text: str) -> Tuple[str, float]: """Get languages of a text using langdetect model. Get the language with the highest probability or no language if only a few words or a low probability Args: ---- text (str): text Returns: ------- The detected language in ISO 639 code and confidence score """ try: lang = detect_langs(text.lower())[0] except LangDetectException: return "unknown", 0.0 if len(text) <= 1 or (len(text) <= 5 and lang.prob <= 0.2): return "unknown", 0.0 return lang.lang, lang.prob def invert_data_structure( x: Union[List[Dict[str, Any]], Dict[str, List[Any]]], ) -> Union[List[Dict[str, Any]], Dict[str, List[Any]]]: """Invert a List of Dict of elements to a Dict of list of elements and the other way around Args: ---- x: a list of dictionaries with the same keys or a dictionary of lists of the same length Returns: ------- dictionary of list when x is a list of dictionaries or a list of dictionaries when x is dictionary of lists """ if isinstance(x, dict): assert len({len(v) for v in x.values()}) == 1, "All the lists in the dictionnary should have the same length." return [dict(zip(x, t)) for t in zip(*x.values())] elif isinstance(x, list): return {k: [dic[k] for dic in x] for k in x[0]} else: raise TypeError(f"Expected input to be either a dict or a list, got {type(input)} instead.")