# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. # Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization from typing import Dict, List, Tuple, Union import cv2 import numpy as np import pyclipper from shapely.geometry import Polygon from ..core import DetectionPostProcessor __all__ = ["DBPostProcessor"] class DBPostProcessor(DetectionPostProcessor): """Implements a post processor for DBNet adapted from the implementation of `xuannianz `_. Args: ---- unclip ratio: ratio used to unshrink polygons min_size_box: minimal length (pix) to keep a box max_candidates: maximum boxes to consider in a single page box_thresh: minimal objectness score to consider a box bin_thresh: threshold used to binzarized p_map at inference time """ def __init__( self, box_thresh: float = 0.1, bin_thresh: float = 0.3, assume_straight_pages: bool = True, ) -> None: super().__init__(box_thresh, bin_thresh, assume_straight_pages) self.unclip_ratio = 1.5 def polygon_to_box( self, points: np.ndarray, ) -> np.ndarray: """Expand a polygon (points) by a factor unclip_ratio, and returns a polygon Args: ---- points: The first parameter. Returns: ------- a box in absolute coordinates (xmin, ymin, xmax, ymax) or (4, 2) array (quadrangle) """ if not self.assume_straight_pages: # Compute the rectangle polygon enclosing the raw polygon rect = cv2.minAreaRect(points) points = cv2.boxPoints(rect) # Add 1 pixel to correct cv2 approx area = (rect[1][0] + 1) * (1 + rect[1][1]) length = 2 * (rect[1][0] + rect[1][1]) + 2 else: poly = Polygon(points) area = poly.area length = poly.length distance = area * self.unclip_ratio / length # compute distance to expand polygon offset = pyclipper.PyclipperOffset() offset.AddPath(points, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) _points = offset.Execute(distance) # Take biggest stack of points idx = 0 if len(_points) > 1: max_size = 0 for _idx, p in enumerate(_points): if len(p) > max_size: idx = _idx max_size = len(p) # We ensure that _points can be correctly casted to a ndarray _points = [_points[idx]] expanded_points: np.ndarray = np.asarray(_points) # expand polygon if len(expanded_points) < 1: return None # type: ignore[return-value] return ( cv2.boundingRect(expanded_points) # type: ignore[return-value] if self.assume_straight_pages else np.roll(cv2.boxPoints(cv2.minAreaRect(expanded_points)), -1, axis=0) ) def bitmap_to_boxes( self, pred: np.ndarray, bitmap: np.ndarray, ) -> np.ndarray: """Compute boxes from a bitmap/pred_map: find connected components then filter boxes Args: ---- pred: Pred map from differentiable binarization output bitmap: Bitmap map computed from pred (binarized) angle_tol: Comparison tolerance of the angle with the median angle across the page ratio_tol: Under this limit aspect ratio, we cannot resolve the direction of the crop Returns: ------- np tensor boxes for the bitmap, each box is a 5-element list containing x, y, w, h, score for the box """ height, width = bitmap.shape[:2] min_size_box = 2 boxes: List[Union[np.ndarray, List[float]]] = [] # get contours from connected components on the bitmap contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: # Check whether smallest enclosing bounding box is not too small if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < min_size_box): continue # Compute objectness if self.assume_straight_pages: x, y, w, h = cv2.boundingRect(contour) points: np.ndarray = np.array([[x, y], [x, y + h], [x + w, y + h], [x + w, y]]) score = self.box_score(pred, points, assume_straight_pages=True) else: score = self.box_score(pred, contour, assume_straight_pages=False) if score < self.box_thresh: # remove polygons with a weak objectness continue if self.assume_straight_pages: _box = self.polygon_to_box(points) else: _box = self.polygon_to_box(np.squeeze(contour)) # Remove too small boxes if self.assume_straight_pages: if _box is None or _box[2] < min_size_box or _box[3] < min_size_box: continue elif np.linalg.norm(_box[2, :] - _box[0, :], axis=-1) < min_size_box: continue if self.assume_straight_pages: x, y, w, h = _box # compute relative polygon to get rid of img shape xmin, ymin, xmax, ymax = x / width, y / height, (x + w) / width, (y + h) / height boxes.append([xmin, ymin, xmax, ymax, score]) else: # compute relative box to get rid of img shape, in that case _box is a 4pt polygon if not isinstance(_box, np.ndarray) and _box.shape == (4, 2): raise AssertionError("When assume straight pages is false a box is a (4, 2) array (polygon)") _box[:, 0] /= width _box[:, 1] /= height boxes.append(_box) if not self.assume_straight_pages: return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 4, 2), dtype=pred.dtype) else: return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype) class _DBNet: """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" `_. Args: ---- feature extractor: the backbone serving as feature extractor fpn_channels: number of channels each extracted feature maps is mapped to """ shrink_ratio = 0.4 thresh_min = 0.3 thresh_max = 0.7 min_size_box = 3 assume_straight_pages: bool = True @staticmethod def compute_distance( xs: np.ndarray, ys: np.ndarray, a: np.ndarray, b: np.ndarray, eps: float = 1e-6, ) -> float: """Compute the distance for each point of the map (xs, ys) to the (a, b) segment Args: ---- xs : map of x coordinates (height, width) ys : map of y coordinates (height, width) a: first point defining the [ab] segment b: second point defining the [ab] segment eps: epsilon to avoid division by zero Returns: ------- The computed distance """ square_dist_1 = np.square(xs - a[0]) + np.square(ys - a[1]) square_dist_2 = np.square(xs - b[0]) + np.square(ys - b[1]) square_dist = np.square(a[0] - b[0]) + np.square(a[1] - b[1]) cosin = (square_dist - square_dist_1 - square_dist_2) / (2 * np.sqrt(square_dist_1 * square_dist_2) + eps) cosin = np.clip(cosin, -1.0, 1.0) square_sin = 1 - np.square(cosin) square_sin = np.nan_to_num(square_sin) result = np.sqrt(square_dist_1 * square_dist_2 * square_sin / square_dist + eps) result[cosin < 0] = np.sqrt(np.fmin(square_dist_1, square_dist_2))[cosin < 0] return result def draw_thresh_map( self, polygon: np.ndarray, canvas: np.ndarray, mask: np.ndarray, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Draw a polygon treshold map on a canvas, as described in the DB paper Args: ---- polygon : array of coord., to draw the boundary of the polygon canvas : threshold map to fill with polygons mask : mask for training on threshold polygons """ if polygon.ndim != 2 or polygon.shape[1] != 2: raise AttributeError("polygon should be a 2 dimensional array of coords") # Augment polygon by shrink_ratio polygon_shape = Polygon(polygon) distance = polygon_shape.area * (1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length subject = [tuple(coor) for coor in polygon] # Get coord as list of tuples padding = pyclipper.PyclipperOffset() padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) padded_polygon: np.ndarray = np.array(padding.Execute(distance)[0]) # Fill the mask with 1 on the new padded polygon cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0) # type: ignore[call-overload] # Get min/max to recover polygon after distance computation xmin = padded_polygon[:, 0].min() xmax = padded_polygon[:, 0].max() ymin = padded_polygon[:, 1].min() ymax = padded_polygon[:, 1].max() width = xmax - xmin + 1 height = ymax - ymin + 1 # Get absolute polygon for distance computation polygon[:, 0] = polygon[:, 0] - xmin polygon[:, 1] = polygon[:, 1] - ymin # Get absolute padded polygon xs: np.ndarray = np.broadcast_to(np.linspace(0, width - 1, num=width).reshape(1, width), (height, width)) ys: np.ndarray = np.broadcast_to(np.linspace(0, height - 1, num=height).reshape(height, 1), (height, width)) # Compute distance map to fill the padded polygon distance_map = np.zeros((polygon.shape[0], height, width), dtype=polygon.dtype) for i in range(polygon.shape[0]): j = (i + 1) % polygon.shape[0] absolute_distance = self.compute_distance(xs, ys, polygon[i], polygon[j]) distance_map[i] = np.clip(absolute_distance / distance, 0, 1) distance_map = np.min(distance_map, axis=0) # Clip the padded polygon inside the canvas xmin_valid = min(max(0, xmin), canvas.shape[1] - 1) xmax_valid = min(max(0, xmax), canvas.shape[1] - 1) ymin_valid = min(max(0, ymin), canvas.shape[0] - 1) ymax_valid = min(max(0, ymax), canvas.shape[0] - 1) # Fill the canvas with the distances computed inside the valid padded polygon canvas[ymin_valid : ymax_valid + 1, xmin_valid : xmax_valid + 1] = np.fmax( 1 - distance_map[ ymin_valid - ymin : ymax_valid - ymax + height, xmin_valid - xmin : xmax_valid - xmax + width ], canvas[ymin_valid : ymax_valid + 1, xmin_valid : xmax_valid + 1], ) return polygon, canvas, mask def build_target( self, target: List[Dict[str, np.ndarray]], output_shape: Tuple[int, int, int], channels_last: bool = True, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: if any(t.dtype != np.float32 for tgt in target for t in tgt.values()): raise AssertionError("the expected dtype of target 'boxes' entry is 'np.float32'.") if any(np.any((t[:, :4] > 1) | (t[:, :4] < 0)) for tgt in target for t in tgt.values()): raise ValueError("the 'boxes' entry of the target is expected to take values between 0 & 1.") input_dtype = next(iter(target[0].values())).dtype if len(target) > 0 else np.float32 h: int w: int if channels_last: h, w, num_classes = output_shape else: num_classes, h, w = output_shape target_shape = (len(target), num_classes, h, w) seg_target: np.ndarray = np.zeros(target_shape, dtype=np.uint8) seg_mask: np.ndarray = np.ones(target_shape, dtype=bool) thresh_target: np.ndarray = np.zeros(target_shape, dtype=np.float32) thresh_mask: np.ndarray = np.zeros(target_shape, dtype=np.uint8) for idx, tgt in enumerate(target): for class_idx, _tgt in enumerate(tgt.values()): # Draw each polygon on gt if _tgt.shape[0] == 0: # Empty image, full masked seg_mask[idx, class_idx] = False # Absolute bounding boxes abs_boxes = _tgt.copy() if abs_boxes.ndim == 3: abs_boxes[:, :, 0] *= w abs_boxes[:, :, 1] *= h polys = abs_boxes boxes_size = np.linalg.norm(abs_boxes[:, 2, :] - abs_boxes[:, 0, :], axis=-1) abs_boxes = np.concatenate((abs_boxes.min(1), abs_boxes.max(1)), -1).round().astype(np.int32) else: abs_boxes[:, [0, 2]] *= w abs_boxes[:, [1, 3]] *= h abs_boxes = abs_boxes.round().astype(np.int32) polys = np.stack( [ abs_boxes[:, [0, 1]], abs_boxes[:, [0, 3]], abs_boxes[:, [2, 3]], abs_boxes[:, [2, 1]], ], axis=1, ) boxes_size = np.minimum(abs_boxes[:, 2] - abs_boxes[:, 0], abs_boxes[:, 3] - abs_boxes[:, 1]) for poly, box, box_size in zip(polys, abs_boxes, boxes_size): # Mask boxes that are too small if box_size < self.min_size_box: seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False continue # Negative shrink for gt, as described in paper polygon = Polygon(poly) distance = polygon.area * (1 - np.power(self.shrink_ratio, 2)) / polygon.length subject = [tuple(coor) for coor in poly] padding = pyclipper.PyclipperOffset() padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) shrunken = padding.Execute(-distance) # Draw polygon on gt if it is valid if len(shrunken) == 0: seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False continue shrunken = np.array(shrunken[0]).reshape(-1, 2) if shrunken.shape[0] <= 2 or not Polygon(shrunken).is_valid: seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False continue cv2.fillPoly(seg_target[idx, class_idx], [shrunken.astype(np.int32)], 1.0) # type: ignore[call-overload] # Draw on both thresh map and thresh mask poly, thresh_target[idx, class_idx], thresh_mask[idx, class_idx] = self.draw_thresh_map( poly, thresh_target[idx, class_idx], thresh_mask[idx, class_idx] ) if channels_last: seg_target = seg_target.transpose((0, 2, 3, 1)) seg_mask = seg_mask.transpose((0, 2, 3, 1)) thresh_target = thresh_target.transpose((0, 2, 3, 1)) thresh_mask = thresh_mask.transpose((0, 2, 3, 1)) thresh_target = thresh_target.astype(input_dtype) * (self.thresh_max - self.thresh_min) + self.thresh_min seg_target = seg_target.astype(input_dtype) seg_mask = seg_mask.astype(bool) thresh_target = thresh_target.astype(input_dtype) thresh_mask = thresh_mask.astype(bool) return seg_target, seg_mask, thresh_target, thresh_mask