# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. import math from typing import Optional, Tuple, Union import numpy as np import torch from PIL.Image import Image from torch.nn.functional import pad from torchvision.transforms import functional as F from torchvision.transforms import transforms as T from ..functional.pytorch import random_shadow __all__ = ["Resize", "GaussianNoise", "ChannelShuffle", "RandomHorizontalFlip", "RandomShadow", "RandomResize"] class Resize(T.Resize): """Resize the input image to the given size""" def __init__( self, size: Union[int, Tuple[int, int]], interpolation=F.InterpolationMode.BILINEAR, preserve_aspect_ratio: bool = False, symmetric_pad: bool = False, ) -> None: super().__init__(size, interpolation, antialias=True) self.preserve_aspect_ratio = preserve_aspect_ratio self.symmetric_pad = symmetric_pad if not isinstance(self.size, (int, tuple, list)): raise AssertionError("size should be either a tuple, a list or an int") def forward( self, img: torch.Tensor, target: Optional[np.ndarray] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, np.ndarray]]: if isinstance(self.size, int): target_ratio = img.shape[-2] / img.shape[-1] else: target_ratio = self.size[0] / self.size[1] actual_ratio = img.shape[-2] / img.shape[-1] if not self.preserve_aspect_ratio or (target_ratio == actual_ratio and (isinstance(self.size, (tuple, list)))): # If we don't preserve the aspect ratio or the wanted aspect ratio is the same than the original one # We can use with the regular resize if target is not None: return super().forward(img), target return super().forward(img) else: # Resize if isinstance(self.size, (tuple, list)): if actual_ratio > target_ratio: tmp_size = (self.size[0], max(int(self.size[0] / actual_ratio), 1)) else: tmp_size = (max(int(self.size[1] * actual_ratio), 1), self.size[1]) elif isinstance(self.size, int): # self.size is the longest side, infer the other if img.shape[-2] <= img.shape[-1]: tmp_size = (max(int(self.size * actual_ratio), 1), self.size) else: tmp_size = (self.size, max(int(self.size / actual_ratio), 1)) # Scale image img = F.resize(img, tmp_size, self.interpolation, antialias=True) raw_shape = img.shape[-2:] if isinstance(self.size, (tuple, list)): # Pad (inverted in pytorch) _pad = (0, self.size[1] - img.shape[-1], 0, self.size[0] - img.shape[-2]) if self.symmetric_pad: half_pad = (math.ceil(_pad[1] / 2), math.ceil(_pad[3] / 2)) _pad = (half_pad[0], _pad[1] - half_pad[0], half_pad[1], _pad[3] - half_pad[1]) img = pad(img, _pad) # In case boxes are provided, resize boxes if needed (for detection task if preserve aspect ratio) if target is not None: if self.preserve_aspect_ratio: # Get absolute coords if target.shape[1:] == (4,): if isinstance(self.size, (tuple, list)) and self.symmetric_pad: if np.max(target) <= 1: offset = half_pad[0] / img.shape[-1], half_pad[1] / img.shape[-2] target[:, [0, 2]] = offset[0] + target[:, [0, 2]] * raw_shape[-1] / img.shape[-1] target[:, [1, 3]] = offset[1] + target[:, [1, 3]] * raw_shape[-2] / img.shape[-2] else: target[:, [0, 2]] *= raw_shape[-1] / img.shape[-1] target[:, [1, 3]] *= raw_shape[-2] / img.shape[-2] elif target.shape[1:] == (4, 2): if isinstance(self.size, (tuple, list)) and self.symmetric_pad: if np.max(target) <= 1: offset = half_pad[0] / img.shape[-1], half_pad[1] / img.shape[-2] target[..., 0] = offset[0] + target[..., 0] * raw_shape[-1] / img.shape[-1] target[..., 1] = offset[1] + target[..., 1] * raw_shape[-2] / img.shape[-2] else: target[..., 0] *= raw_shape[-1] / img.shape[-1] target[..., 1] *= raw_shape[-2] / img.shape[-2] else: raise AssertionError return img, target return img def __repr__(self) -> str: interpolate_str = self.interpolation.value _repr = f"output_size={self.size}, interpolation='{interpolate_str}'" if self.preserve_aspect_ratio: _repr += f", preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}" return f"{self.__class__.__name__}({_repr})" class GaussianNoise(torch.nn.Module): """Adds Gaussian Noise to the input tensor >>> import torch >>> from doctr.transforms import GaussianNoise >>> transfo = GaussianNoise(0., 1.) >>> out = transfo(torch.rand((3, 224, 224))) Args: ---- mean : mean of the gaussian distribution std : std of the gaussian distribution """ def __init__(self, mean: float = 0.0, std: float = 1.0) -> None: super().__init__() self.std = std self.mean = mean def forward(self, x: torch.Tensor) -> torch.Tensor: # Reshape the distribution noise = self.mean + 2 * self.std * torch.rand(x.shape, device=x.device) - self.std if x.dtype == torch.uint8: return (x + 255 * noise).round().clamp(0, 255).to(dtype=torch.uint8) else: return (x + noise.to(dtype=x.dtype)).clamp(0, 1) def extra_repr(self) -> str: return f"mean={self.mean}, std={self.std}" class ChannelShuffle(torch.nn.Module): """Randomly shuffle channel order of a given image""" def __init__(self): super().__init__() def forward(self, img: torch.Tensor) -> torch.Tensor: # Get a random order chan_order = torch.rand(img.shape[0]).argsort() return img[chan_order] class RandomHorizontalFlip(T.RandomHorizontalFlip): """Randomly flip the input image horizontally""" def forward( self, img: Union[torch.Tensor, Image], target: np.ndarray ) -> Tuple[Union[torch.Tensor, Image], np.ndarray]: if torch.rand(1) < self.p: _img = F.hflip(img) _target = target.copy() # Changing the relative bbox coordinates if target.shape[1:] == (4,): _target[:, ::2] = 1 - target[:, [2, 0]] else: _target[..., 0] = 1 - target[..., 0] return _img, _target return img, target class RandomShadow(torch.nn.Module): """Adds random shade to the input image >>> import torch >>> from doctr.transforms import RandomShadow >>> transfo = RandomShadow((0., 1.)) >>> out = transfo(torch.rand((3, 64, 64))) Args: ---- opacity_range : minimum and maximum opacity of the shade """ def __init__(self, opacity_range: Optional[Tuple[float, float]] = None) -> None: super().__init__() self.opacity_range = opacity_range if isinstance(opacity_range, tuple) else (0.2, 0.8) def __call__(self, x: torch.Tensor) -> torch.Tensor: # Reshape the distribution try: if x.dtype == torch.uint8: return ( ( 255 * random_shadow( x.to(dtype=torch.float32) / 255, self.opacity_range, ) ) .round() .clip(0, 255) .to(dtype=torch.uint8) ) else: return random_shadow(x, self.opacity_range).clip(0, 1) except ValueError: return x def extra_repr(self) -> str: return f"opacity_range={self.opacity_range}" class RandomResize(torch.nn.Module): """Randomly resize the input image and align corresponding targets >>> import torch >>> from doctr.transforms import RandomResize >>> transfo = RandomResize((0.3, 0.9), preserve_aspect_ratio=True, symmetric_pad=True, p=0.5) >>> out = transfo(torch.rand((3, 64, 64))) Args: ---- scale_range: range of the resizing factor for width and height (independently) preserve_aspect_ratio: whether to preserve the aspect ratio of the image, given a float value, the aspect ratio will be preserved with this probability symmetric_pad: whether to symmetrically pad the image, given a float value, the symmetric padding will be applied with this probability p: probability to apply the transformation """ def __init__( self, scale_range: Tuple[float, float] = (0.3, 0.9), preserve_aspect_ratio: Union[bool, float] = False, symmetric_pad: Union[bool, float] = False, p: float = 0.5, ) -> None: super().__init__() self.scale_range = scale_range self.preserve_aspect_ratio = preserve_aspect_ratio self.symmetric_pad = symmetric_pad self.p = p self._resize = Resize def forward(self, img: torch.Tensor, target: np.ndarray) -> Tuple[torch.Tensor, np.ndarray]: if torch.rand(1) < self.p: scale_h = np.random.uniform(*self.scale_range) scale_w = np.random.uniform(*self.scale_range) new_size = (int(img.shape[-2] * scale_h), int(img.shape[-1] * scale_w)) _img, _target = self._resize( new_size, preserve_aspect_ratio=self.preserve_aspect_ratio if isinstance(self.preserve_aspect_ratio, bool) else bool(torch.rand(1) <= self.symmetric_pad), symmetric_pad=self.symmetric_pad if isinstance(self.symmetric_pad, bool) else bool(torch.rand(1) <= self.symmetric_pad), )(img, target) return _img, _target return img, target def extra_repr(self) -> str: return f"scale_range={self.scale_range}, preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}, p={self.p}" # noqa: E501