adirik commited on
Commit
1e58367
·
1 Parent(s): 464cb65
Files changed (3) hide show
  1. app.py +53 -0
  2. astronaut.png +0 -0
  3. coffee.png +0 -0
app.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ import numpy as np
4
+ from PIL import Image, ImageDraw, ImageFont
5
+ from transformers import OwlViTProcessor, OwlViTForObjectDetection
6
+
7
+ model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32").eval()
8
+ processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
9
+
10
+
11
+ def query_image(img, text_queries):
12
+ text_queries = text_queries.split(",")
13
+ inputs = processor(text=text_queries, images=img, return_tensors="pt")
14
+
15
+ with torch.no_grad():
16
+ outputs = model(**inputs)
17
+
18
+ target_sizes = torch.Tensor([[768, 768]])
19
+ results = processor.post_process(outputs=outputs, target_sizes=target_sizes)
20
+ boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
21
+
22
+ draw = ImageDraw.Draw(img)
23
+ font = ImageFont.truetype("/System/Library/Fonts/Helvetica.ttc", size=22)
24
+
25
+ score_threshold = 0.1
26
+ for box, score, label in zip(boxes, scores, labels):
27
+ box = [int(i) for i in box.tolist()]
28
+
29
+ if score >= score_threshold:
30
+ draw.rectangle(box, outline="red", width=4)
31
+ text_loc =[box[0]+5, box[3]+10]
32
+ draw.text(text_loc, text_queries[label], fill="red", font=font, stroke_width=1)
33
+
34
+ img = np.array(img)
35
+ return img
36
+
37
+
38
+ description = description = """
39
+ Gradio demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/owlvit">OWL-ViT</a>,
40
+ introduced in <a href="https://arxiv.org/abs/2205.06230">Simple Open-Vocabulary Object Detection
41
+ with Vision Transformers</a>.
42
+ \n\nYou can use OWL-ViT to query images with text descriptions of any object.
43
+ To use it, simply upload an image and enter comma separated text descriptions of objects you want to query the image for.
44
+ """
45
+ demo = gr.Interface(
46
+ query_image,
47
+ inputs=[gr.Image(shape=(768, 768), type="pil"), "text"],
48
+ outputs="image",
49
+ title="Zero-Shot Object Detection with OWL-ViT",
50
+ description="You can use OWL-ViT to query images with text descriptions of any object",
51
+ examples=[["astronaut.png", "human face, rocket, flag, nasa badge"], ["coffee.png", "coffee mug, spoon, plate"]]
52
+ )
53
+ demo.launch(debug=True)
astronaut.png ADDED
coffee.png ADDED