Spaces:
Sleeping
Sleeping
# import streamlit as st | |
# import torch | |
# from transformers import LongformerTokenizer, LongformerForSequenceClassification | |
# # Load the fine-tuned model and tokenizer | |
# model_path = "./clinical_longformer" | |
# tokenizer = LongformerTokenizer.from_pretrained(model_path) | |
# model = LongformerForSequenceClassification.from_pretrained(model_path) | |
# model.eval() # Set the model to evaluation mode | |
# # ICD-9 code columns used during training | |
# icd9_columns = [ | |
# '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9', | |
# '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61', | |
# '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0', | |
# '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0', | |
# '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15', | |
# '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61' | |
# ] | |
# # Function for making predictions | |
# def predict_icd9(texts, tokenizer, model, threshold=0.5): | |
# inputs = tokenizer( | |
# texts, | |
# padding="max_length", | |
# truncation=True, | |
# max_length=512, | |
# return_tensors="pt" | |
# ) | |
# with torch.no_grad(): | |
# outputs = model( | |
# input_ids=inputs["input_ids"], | |
# attention_mask=inputs["attention_mask"] | |
# ) | |
# logits = outputs.logits | |
# probabilities = torch.sigmoid(logits) | |
# predictions = (probabilities > threshold).int() | |
# predicted_icd9 = [] | |
# for pred in predictions: | |
# codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1] | |
# predicted_icd9.append(codes) | |
# return predicted_icd9 | |
# # Streamlit UI | |
# st.title("ICD-9 Code Prediction") | |
# st.sidebar.header("Model Options") | |
# model_option = st.sidebar.selectbox("Select Model", [ "ClinicalLongformer"]) | |
# threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01) | |
# st.write("### Enter Medical Summary") | |
# input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...") | |
# if st.button("Predict"): | |
# if input_text.strip(): | |
# predictions = predict_icd9([input_text], tokenizer, model, threshold) | |
# st.write("### Predicted ICD-9 Codes") | |
# for code in predictions[0]: | |
# st.write(f"- {code}") | |
# else: | |
# st.error("Please enter a medical summary.") | |
# import torch | |
# import pandas as pd | |
# import streamlit as st | |
# from transformers import LongformerTokenizer, LongformerForSequenceClassification | |
# # Load the fine-tuned model and tokenizer | |
# model_path = "./clinical_longformer" | |
# tokenizer = LongformerTokenizer.from_pretrained(model_path) | |
# model = LongformerForSequenceClassification.from_pretrained(model_path) | |
# model.eval() # Set the model to evaluation mode | |
# # Load the ICD-9 descriptions from CSV into a dictionary | |
# icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file | |
# icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching | |
# icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching | |
# # ICD-9 code columns used during training | |
# icd9_columns = [ | |
# '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9', | |
# '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61', | |
# '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0', | |
# '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0', | |
# '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15', | |
# '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61' | |
# ] | |
# # Function for making predictions | |
# def predict_icd9(texts, tokenizer, model, threshold=0.5): | |
# inputs = tokenizer( | |
# texts, | |
# padding="max_length", | |
# truncation=True, | |
# max_length=512, | |
# return_tensors="pt" | |
# ) | |
# with torch.no_grad(): | |
# outputs = model( | |
# input_ids=inputs["input_ids"], | |
# attention_mask=inputs["attention_mask"] | |
# ) | |
# logits = outputs.logits | |
# probabilities = torch.sigmoid(logits) | |
# predictions = (probabilities > threshold).int() | |
# predicted_icd9 = [] | |
# for pred in predictions: | |
# codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1] | |
# predicted_icd9.append(codes) | |
# # Fetch descriptions for the predicted ICD-9 codes from the pre-loaded descriptions | |
# predictions_with_desc = [] | |
# for codes in predicted_icd9: | |
# code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes] | |
# predictions_with_desc.append(code_with_desc) | |
# return predictions_with_desc | |
# # Streamlit UI | |
# st.title("ICD-9 Code Prediction") | |
# st.sidebar.header("Model Options") | |
# threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01) | |
# st.write("### Enter Medical Summary") | |
# input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...") | |
# if st.button("Predict"): | |
# if input_text.strip(): | |
# predictions = predict_icd9([input_text], tokenizer, model, threshold) | |
# st.write("### Predicted ICD-9 Codes and Descriptions") | |
# for code, description in predictions[0]: | |
# st.write(f"- {code}: {description}") | |
# else: | |
# st.error("Please enter a medical summary.") | |
# import torch | |
# import pandas as pd | |
# import streamlit as st | |
# from transformers import LongformerTokenizer, LongformerForSequenceClassification | |
# # Load the fine-tuned model and tokenizer | |
# model_path = "./clinical_longformer" | |
# tokenizer = LongformerTokenizer.from_pretrained(model_path) | |
# model = LongformerForSequenceClassification.from_pretrained(model_path) | |
# model.eval() # Set the model to evaluation mode | |
# # Load the ICD-9 descriptions from CSV into a dictionary | |
# icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file | |
# icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type | |
# icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals for matching | |
# # Load the ICD-9 to ICD-10 mapping | |
# icd9_to_icd10 = {} | |
# with open("2015_I9gem.txt", "r") as file: | |
# for line in file: | |
# parts = line.strip().split() | |
# if len(parts) == 3: | |
# icd9, icd10, _ = parts | |
# icd9_to_icd10[icd9] = icd10 | |
# # ICD-9 code columns used during training | |
# icd9_columns = [ | |
# '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9', | |
# '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61', | |
# '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0', | |
# '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0', | |
# '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15', | |
# '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61' | |
# ] | |
# # Function for making predictions and mapping to ICD-10 | |
# def predict_icd9(texts, tokenizer, model, threshold=0.5): | |
# inputs = tokenizer( | |
# texts, | |
# padding="max_length", | |
# truncation=True, | |
# max_length=512, | |
# return_tensors="pt" | |
# ) | |
# with torch.no_grad(): | |
# outputs = model( | |
# input_ids=inputs["input_ids"], | |
# attention_mask=inputs["attention_mask"] | |
# ) | |
# logits = outputs.logits | |
# probabilities = torch.sigmoid(logits) | |
# predictions = (probabilities > threshold).int() | |
# predicted_icd9 = [] | |
# for pred in predictions: | |
# codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1] | |
# predicted_icd9.append(codes) | |
# # Fetch descriptions and map to ICD-10 codes | |
# predictions_with_desc = [] | |
# for codes in predicted_icd9: | |
# code_with_desc = [] | |
# for code in codes: | |
# icd9_stripped = code.replace('.', '') | |
# icd10_code = icd9_to_icd10.get(icd9_stripped, "Mapping not found") | |
# icd9_desc = icd9_descriptions.get(icd9_stripped, "Description not found") | |
# code_with_desc.append((code, icd9_desc, icd10_code)) | |
# predictions_with_desc.append(code_with_desc) | |
# return predictions_with_desc | |
# # Streamlit UI | |
# st.title("ICD-9 to ICD-10 Code Prediction") | |
# st.sidebar.header("Model Options") | |
# threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01) | |
# st.write("### Enter Medical Summary") | |
# input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...") | |
# if st.button("Predict"): | |
# if input_text.strip(): | |
# predictions = predict_icd9([input_text], tokenizer, model, threshold) | |
# st.write("### Predicted ICD-9 and ICD-10 Codes with Descriptions") | |
# for icd9_code, description, icd10_code in predictions[0]: | |
# st.write(f"- ICD-9: {icd9_code} ({description}) -> ICD-10: {icd10_code}") | |
# else: | |
# st.error("Please enter a medical summary.") | |
import os | |
import torch | |
import pandas as pd | |
import streamlit as st | |
from PIL import Image | |
from transformers import LongformerTokenizer, LongformerForSequenceClassification | |
from phi.agent import Agent | |
from phi.model.google import Gemini | |
from phi.tools.duckduckgo import DuckDuckGo | |
# Load the fine-tuned ICD-9 model and tokenizer | |
model_path = "./clinical_longformer" | |
tokenizer = LongformerTokenizer.from_pretrained(model_path) | |
model = LongformerForSequenceClassification.from_pretrained(model_path) | |
model.eval() # Set the model to evaluation mode | |
# Load the ICD-9 descriptions from CSV into a dictionary | |
icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file | |
icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching | |
icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching | |
# ICD-9 code columns used during training | |
icd9_columns = [ | |
'038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9', | |
'287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61', | |
'39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0', | |
'486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0', | |
'88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15', | |
'995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61' | |
] | |
# Function for making ICD-9 predictions | |
def predict_icd9(texts, tokenizer, model, threshold=0.5): | |
inputs = tokenizer( | |
texts, | |
padding="max_length", | |
truncation=True, | |
max_length=512, | |
return_tensors="pt" | |
) | |
with torch.no_grad(): | |
outputs = model( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"] | |
) | |
logits = outputs.logits | |
probabilities = torch.sigmoid(logits) | |
predictions = (probabilities > threshold).int() | |
predicted_icd9 = [] | |
for pred in predictions: | |
codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1] | |
predicted_icd9.append(codes) | |
predictions_with_desc = [] | |
for codes in predicted_icd9: | |
code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes] | |
predictions_with_desc.append(code_with_desc) | |
return predictions_with_desc | |
# Streamlit UI | |
st.title("Medical Diagnosis Assistant") | |
option = st.selectbox( | |
"Choose Diagnosis Method", | |
("ICD-9 Code Prediction", "Medical Image Analysis") | |
) | |
# ICD-9 Code Prediction | |
if option == "ICD-9 Code Prediction": | |
st.write("### Enter Medical Summary") | |
input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...") | |
threshold = st.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01) | |
if st.button("Predict ICD-9 Codes"): | |
if input_text.strip(): | |
predictions = predict_icd9([input_text], tokenizer, model, threshold) | |
st.write("### Predicted ICD-9 Codes and Descriptions") | |
for code, description in predictions[0]: | |
st.write(f"- {code}: {description}") | |
else: | |
st.error("Please enter a medical summary.") | |
# Medical Image Analysis | |
elif option == "Medical Image Analysis": | |
if "GOOGLE_API_KEY" not in st.session_state: | |
st.warning("Please enter your Google API Key in the sidebar to continue") | |
else: | |
medical_agent = Agent( | |
model=Gemini( | |
api_key=st.session_state.GOOGLE_API_KEY, | |
id="gemini-2.0-flash-exp" | |
), | |
tools=[DuckDuckGo()], | |
markdown=True | |
) | |
query = """ | |
You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows: | |
### 1. Image Type & Region | |
- Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.) | |
- Identify the patient's anatomical region and positioning | |
- Comment on image quality and technical adequacy | |
### 2. Key Findings | |
- List primary observations systematically | |
- Note any abnormalities in the patient's imaging with precise descriptions | |
- Include measurements and densities where relevant | |
- Describe location, size, shape, and characteristics | |
- Rate severity: Normal/Mild/Moderate/Severe | |
### 3. Diagnostic Assessment | |
- Provide primary diagnosis with confidence level | |
- List differential diagnoses in order of likelihood | |
- Support each diagnosis with observed evidence from the patient's imaging | |
- Note any critical or urgent findings | |
### 4. Patient-Friendly Explanation | |
- Explain the findings in simple, clear language that the patient can understand | |
- Avoid medical jargon or provide clear definitions | |
- Include visual analogies if helpful | |
- Address common patient concerns related to these findings | |
### 5. Research Context | |
- Use the DuckDuckGo search tool to find recent medical literature about similar cases | |
- Provide a list of relevant medical links | |
- Include key references to support your analysis | |
""" | |
upload_container = st.container() | |
image_container = st.container() | |
analysis_container = st.container() | |
with upload_container: | |
uploaded_file = st.file_uploader( | |
"Upload Medical Image", | |
type=["jpg", "jpeg", "png", "dicom"], | |
help="Supported formats: JPG, JPEG, PNG, DICOM" | |
) | |
if uploaded_file is not None: | |
with image_container: | |
col1, col2, col3 = st.columns([1, 2, 1]) | |
with col2: | |
image = Image.open(uploaded_file) | |
width, height = image.size | |
aspect_ratio = width / height | |
new_width = 500 | |
new_height = int(new_width / aspect_ratio) | |
resized_image = image.resize((new_width, new_height)) | |
st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True) | |
analyze_button = st.button("π Analyze Image") | |
with analysis_container: | |
if analyze_button: | |
image_path = "temp_medical_image.png" | |
with open(image_path, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
with st.spinner("π Analyzing image... Please wait."): | |
try: | |
response = medical_agent.run(query, images=[image_path]) | |
st.markdown("### π Analysis Results") | |
st.markdown(response.content) | |
except Exception as e: | |
st.error(f"Analysis error: {e}") | |
finally: | |
if os.path.exists(image_path): | |
os.remove(image_path) | |
else: | |
st.info("π Please upload a medical image to begin analysis") | |